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We have studied the structure and dynamics of nonrotating rare-gas trimers bound by a potential that
combines two-body Lennard-Jones interactions and three-body Axilrod-Teifge dipole interactions. Both
classical and quantum trimers are examined. We investigate the onset and development of chaotic dynamics in
the classical clusters by computing the Liapunov exponents associated with various phase space trajectories. In
our studies of the quantum clusters, we examine the structure of the vibrational eigenstates, the statistical
properties of the distribution of energy levels, and the average cluster structure at finite temperatures. Both
avenues of research are principally aimed at understanding the effect of the three-body term on the clusters’
behavior. We find that the three-body term gives rise to an integrable or nearly integrable component of phase
space that is associated with the clusters’ linear configuration and that manifests itself in both the classical and
qguantum properties of the trimers. The finite temperature structures predicted for quanjwhidters suggest
that over the range of parameters considered here, these clusters are sufficiently delocalized that properties
associated with the linear configuration should be readily observable, even at very low temperatures.
[S1063-651%97)12107-9

PACS numbes): 05.45+b, 36.40.Sx, 34.20.Cf, 03.65.Ge

[. INTRODUCTION AND BACKGROUND clusters are often cited as prototypical quantum clusters
[3,4], while the much heavier Xgeclusters should behave
The structure and dynamics of weakly bound van deressentially classically. Furthermore, the importance of quan-
Waals molecules and clusters continue to be topics of activeum statistics in van der Waals systems is readily explored
study in chemical physics, in part because of the relative eadsy comparing the behavior ofHe,, and “He,, clusters[5].
with which such species can be investigated both experimen- In this paper we investigate the structural and dynam-
tally and theoretically, and in part because of the wide rangécal changes in the homogeneous rare-gas trimers, Ne
of chemical and physical phenomena that can be better urir;, Kr;, and Xe;, which result from the addition of a
derstood through such studies. These phenomena include thong three-body Axilrod-Telle¢AT) term to the conven-
nature of intermolecular forces, the onset of bulk thermody+ional two-body Lennard-Joned.J) cluster binding poten-
namic behavior as a function of cluster size, the effect oftial. Both classical and quantum mechanical properties of the
three-body and many-body forces on the structure and dyelusters are studied. The strength of the AT potential term is
namics of nonrigid molecules, and vibrational chaos indetermined by a single adjustable parameter, which may be
weakly bound systems. Referencgk] and [2] contain  varied to generate a family of very different potential energy
“snapshots” of recent research on van der Waals complexesurfaces. The combined Lennard-Jones-Axilrod-Teller
Some of the most thoroughly studied van der Waals sys(LJAT) potential thus presents us with a model system in
tems are homogeneous clusters of rare-gas atoms. Theoratihich to explore how classical and quantum properties of
cal investigations of rare-gas clusters are particularly attracvan der Waals clusters are influenced by the topography of
tive because these systems serve as benchmarks for studyithg underlying potential energy surfaRES.
the effects of quantum mechanical behavior in weakly bound We note that Hornet al. [6] have undertaken quant-
systems. Rare-gas clusters from H® Xe, are bound to- um mechanical studies of the low-lying vibrational states of
gether by interatomic forces that are qualitatively and quanAr 3 clusters using two- and three-body potential energy
titatively very similar when expressed in reduced units.terms that are substantially more realistic than the LIJAT po-
Hence variations in the structure and dynamics of these clugential we study here. Our aims, however, are quite different
ters can be largely attributed to quantum mechanical effectsom those of Horret al, who emphasize the need for spec-
arising from the wide range of atomic masses represented itnoscopic accuracy and state-by-state assignment of the vi-
the last column of the Periodic Table. For example,,He brational eigenstates. We are primarily concerned with un-
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TABLE I. Lennard-Jones parameters used in this work. The B. Quantum trimers

guantum parametey=7/cyme is also given. A dimensionless quantum mechanical Hamiltonian can be

obtained from Eg. (1) by defining the parameter

A cm™?! m (am
o) eem? (amu n e
Ne 2.749 25.0 20.18 0.0945 s
Ar 3.405 84.0 39.948 0.0294 N T oo _
Kr 3.827 115.4 83.80 0.0155 H="3 .21 Vit V(Qiz2,Azs,A13:2) €, @
Xe 4.100 156.4 131.30 0.0099

whereV is the LJAT potential presented above, and the di-
mensionless coordinate; =r;; /0. The eigenstates of the
derstanding the relationship between the shape of the PE®/antum Hamiltonian are fully parametrized hyandZ; the
and the classical and quantum properties of rare-gas trimerg, values for the trimers considered here are listed in Table I.
The combined LJAT potential is ideal for these purposeslhe classical limit is approached gs-0.
because of the control it gives us over the topography of the We obtain the vibrational energy levels for the trimers
PES. using the discrete variable representati@VR) approach
We begin by reviewing some theoretical and computa-Outlined below in Sec. Ill, and examine various statistical
tional aspects of our work in Secs. Il and IIl; we then presenproperties of the level distributions. The statistical measures
results for the classical and quantum LJAT trimers in Secswe concentrate on here ar¢S), the distribution of spacings
IV and V, respectively. Throughout, we compare our resultfetween successive energy levels, akg(L), the mean
with earlier findings for trimers bound by LJ forces only. The spectral rigidity over a rangk of energy levels. Reference
results presented here suggest that the phase space of LJAIO| contains detailed definitions of the(S) and A(L)
trimers is of a mixed nature, with both chaotic and regularstatistics, along with an extensive review of the relevant sta-
components. We conclude with a brief discussion of the imdistical properties of spectra. Here we simply note that
plications of this observation in Sec. VI. P(S) and A3(L) are complementary statistical descriptions
of the level spectrum of a syste®(S) quantifies the short-
range correlations between successive energy levels, while

Il. THEORETICAL CONSIDERATIONS A3(L) measures, over a large energy rarigethe least
A. Classical trimers ﬁggaﬁrtes deviation of the total sum of states from a straight
The classical Hamiltonian for LIJAT trimers with atomic The spectra| statistics obtained from quantum Hamilto-
massm is nians with chaotic classical analogs have been found to obey

predictions based on random matrix thegRMT) [10]. A
very good approximation to the RMT prediction fB(S) is

3 3
1
EE— 2 y12_ )6
H 2mi21 pi+ae 2 1 [Colriy)™= ()] the Wigner distribution
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The RMT prediction for the spectral rigidity in the larde

The familiar two-body Lennard-Jones interaction is de-|imit is
scribed by the energy and length scale parametexsd o;
the dimensionless parametédetermines the strength of the
three-body Axilrod-Teller interaction, which depends on the
cluster’s three internal angles, 6,, and#s. The form of the
AT potential is such that foZ>0 it stabilizes near-linear Both of these predictions are for a range of energy levels that
configurations of the cluster and destabilizes the equilaterdiave been “unfolded” to obtain a spectrum with unit mean
triangle and nearby configuratiofig|. The LJ parameters we level density.
use in the current work are listed in Table I. Quantum Hamiltonians whose classical analogs are inte-

We characterize the dynamics of classical LJAT trimersgrable are found to obey Poisson statisfit8]. In this case,
by computing the Liapunov exponents along constant-energthe distribution of spacings between successive energy levels
molecular dynamics trajectories generated by Hg. Li- is
apunov exponents quantify the average long-time exponen-
tial rate of divergence of nearby trajectories in phase space.
For an isolated triatomic system, .there are only two Li'and the spectral rigidity is
apunov exponents that may be positj@d; we denote these
exponents a&; and\,. If at least one of these exponents is AzHL)=L/15. (6)
positive, the system is chaotic; if both exponents are zero, '
the system is quasiperiodic. The sum of the positive expo- Systems may display statistical properties that are inter-
nents is the Kolmogorov entropyK(entropy, which mea- mediate between the chaotiRMT) and integrabléPoisson
sures the rate at which information about the state of thdimits. This corresponds to the coexistence of regular and
system is losf9]. irregular regions in the phase space of the classical Hamil-

InL
Azrur(L)= ?—0.007. (4)

Pe(S)=e"S 5
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tonian. This behavior can be understood as a superposition @finction and the finite temperature spatial distribution func-
properly weighted contributions from RMT-type and tions for the quantum LJAT trimer Ne These quantum
Poisson-type quantum statistics, which arise, respectivelyMonte Carlo techniques are described briefly below.

from chaotic and integrable components of phase space in

the analogous classical Hamiltonian. For the simplest case of

two disjoint components of classical phase space, one with Iil. COMPUTATIONAL METHODS

relative weightq, which is chaotic, and one with weight A. Liapunov exponents

(1—q), which is regular, Berry and RobniklL1] have de-
rived a formula forP(S) that interpolates between the RMT
and Poisson limits presented above:

The techniques we use to compute the Liapunov expo-
nents of the classical LJAT trimers have been described in
detail elsewherg13,14]. Briefly, we integrate numerically

P(S:q)=(1—q)2erf I2vexd —(1—a)S the equations of motion for finite length vectors that reside in
(Si9=(1-aq) o(\/;q Jexd —(1-a)S] the tangent space of the trimer; these equations of motion
+[2q(1—q)+ 7q3S/2] depend parametrically on a constant-energy reference trajec-

tory that the trimer follows in phase space and that is gener-
ated by the Hamiltonian given in Eql). We periodically
compute the Liapunov exponents by measuring the extent by
which the tangent space vectors have grown or shrunk since
the trajectory’s beginning.

In the present study, we integrate the ref%rrence trajectory

C _ and the tangent space equations of motion fortirfie steps

Aa(L;0)= Az pur(QL) +Azpl(1-A)L). ® of length 10 ** s each. After every 1000 steps, we compute

The DVR calculations outlined in Sec. Il yield the eigen- the Liapunov exponents based on the lengths of the tangent

states of the quantum LJAT trimers and thereby give u$Pace vectors; we then take the final set of exponents ob-
some information about how the quantum trimers eka)retalned at the end of the trajectory as our estimates of the true

different regions of the PES. We are also interested in un€XPonents. , _ S
derstanding how the quantum clusters sample the PES at Strictly speaking, Liapunov exponents are only defined in
various temperatures; here, we expect to see strong diffef€ limit t—c, and the exponents we calculate are properly

ences between the classical and quantum trimers, at least fofiled “finite-time” Liapunov exponents. One way to assess
sufficiently small atomic masses. how closely our computed exponents approximate the true

As an example, consider tHE=0 limit. At T=0, the t—o0 exponents is to compare the results obtained from dif-

spatial distribution function for the classical trimers will sim- férent trajectories. This is because for ergodic systems, the
ply be 8(x—x.;), wherex represents all of the cluster's t—oo Liapunov exponents are mdependent_of theT initial con-
internal degrees of freedom, argl, specifies the location of ditions [8]. We therefore compute 100 trajectories at each
the global minimum on the PES. THe=0 spatial distribu- €N€rgy and consider the distribution of exponents aftér 10
tion function for the quantum trimers will be given by the steps. The initial condltl_ons for thg batches of 100 trajecto-
probability density P(x)=|W(x)|2 associated with the ries are drawn from a mlcirocanomcal ensenjlilg, 16 with
ground state wave functiol o(x). For small values of the total angular momenturd=0.

atomic massn, ground state tunneling and zero-point energy _ |f @ batch of 100 trajectories gives %lrelatlvgly narrow
effects will lead to finite(nonzero probabilities of observing  distribution of Liapunov exponents after L6teps, it seems

configurations of the quantum cluster associated with highefX€ly that the finite-time exponents are close approximations

energy minima, even af=0. In the absence of fermionic (© thet—2 exponents. If, however, the trajectories generate
antisymmetrization requirements/o(x) is nodeless. Con- & Wide distribution of final exponents, we know that either
figurations can be sampled from such a wave function usin%)nger trajectories are required or the phase space sampled
diffusion quantum Monte Carlo techniquésutlined beloy ~ PY the trajectories is not a single ergodic component.

so as to gauge the extent to which the wave function is lo-

calized in a particular minimum. B. Vibrational eigenstates

At nonzero temperatures, the spatial distribution func- To compute the vibrational energy levels and eigenstates
tion for the quantum cluster will be given by the diag- of the (J=0) quantum LJAT trimers, we use the three-
onal density matrix element in the canonical ensemblegimensional DVR method with successive diagonalization
P(x)=(xle”#"|x), where B=1KkT. In the eigenfunction and truncation, as developed by Whitnell, Light, and co-

xexf — (1—q)S— 7mq2S?/4]. (7)

Pande)[ 12] has given an expression for the spectral rigidity
A3, which also interpolates between the regular and chaoti
limits:

representation, we have workers[17-19.
The Hamiltonian in Eq(2) can be written as a function of
P(x)= ¥ (x)|2e~BEn 9 three internal coordinates V\_/hen only states with totgl angular
*) zn: V()] © momentumJ=0 are considered. We express this three-

dimensional Hamiltonian in terms of Pack’s adiabatic prin-
where{¥,(x)} are the eigenstates of the Hamiltonian with cipal axis hypersphericdAPH) coordinate$20,21] in order
respective eigenvalug€,}. Finite temperature spatial dis- to exploit the symmetry of the trimers and thereby reduce the
tributions can be generated by path integral Monte Carlacomputational effort required to calculate the eigenfunctions.
methods. In this study, we use diffusion and path integral Pack’'s APH coordinatesp(6,x) are defined in terms of
Monte Carlo techniques to compute the ground state wavthe mass-scaled Jacobi coordinatedi(¢) for a three-atom
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system. These mass-scaled coordinates depend on a dimen-In our DQMC scheme, the wave function is represented
sionless constartt, which is a function of the masses of the by a distribution of 1000 replicas. The replicas are propa-
three atoms; when all three atoms have the same masgated iteratively using the short-time propagatexpressed
c=(3/4)"*. In the mass-scaled Jacobi schemejs the in- in atomic unit$

teratomic vector between two of the three atoms'R is the

vector from the center of mass of these two atoms to the  P(Xn+1,%n) =exp{—At[V(X,+1) —EJ}Vm/27At

position of the third atom, ang is the angle betweeR and X exd —m(Xp41— Xn)?/2At], (13

r.
With this definition of the mass-scaled Jacobi coordinatesyhereAt is the time step.

and letting For the Ng cluster, we used a time step dft=100
atomic units, and propagated the replicas fox B to

1x 10° time steps to obtain ground state energies that were
converged to better than 1¥%s compared with the DVR
calculation$. Once the energy had converged, we propa-

S=J(R?-r?)2+(2Rr cosp)?, (10

the APH coordinates are

p2=r2+R? gated the replicas for another *Lime steps; after every
' 10* steps, we performed a steepest descent quench on each
tang/2=S/(2Rrsing), replica to measure the fraction of replicas occupying the tri-
(11 angular basinf,;, and the fraction occupying the linear ba-
sin2y = (2Rrcos$)/S, sin, f;, =1—fy;. The occupancies calculated from these 10
quenches were then averaged. WHileand f};, will not be
cos2y=(R2—r2)/S. exactly the same as the ground state occupancies of the two

minima, because the replicas are distributed according to
The limits of these APH coordinates are<p<w, Foand not| W |2, there is evidence from the results of our
0<6<m, and 0<y<2. Linear configurations of the tri- Study that for Ng the two sets of quantities are not very
mer correspond t@=; the equilateral triangle configura- different. In view of the fact that ift is largely localized in
tion corresponds t@=0 (with all y values being equiva- & 9IVen basin|¥|* will also be, this is not surprising.
lent).
The finite basis representations used to generate the DVR C. Finite temperature quantum properties

in Pack's APH coordinates are the same as those used by The finite temperature properties of the quantum LJAT
Whitnell and Light[18,19 in their study of H;™. The DVR  Ne, cluster are computed using the Fourier path integral
points for thep and x coordinates are equally spaced, with Monte Carlo(PIMC) technique[28—32. In this method, a
those iny covering the entire rangesOy<2m. The DVR  Metropolis Monte Carlo simulation is used to sample the
points for p span a specified and adjustable range in thisoordinate space variablesand the Fourier coefficients,
coordinate. The DVR parameters used in the current Ca'CL‘Nhich represent the various quantum paths of the System_

lations are quite similar to those used in earlier studies of L¥he Metropolis weight function for this Monte Carlo simu-
trimers [22], and we refer the reader to these studies fonation is

details.
The ground states of the trimers can also be computed az
using diffusion quantum Monte Cark®QMC) techniques. W(x,a)= ex;{ ~B(Ver)— 2 ﬁ} (14
This approach is based on the fact that by introducing the " A
imaginary time \_/ariableq-zit/ﬁ, we can write the time- where B=1KkT, o2=28#%/mm?n?, and (V) is the par-
dependent Schdinger equation for the clusters as a diffu- iy averaged potential associated with the quantum path. A
sion equation PIMC simulation will generate a set of configuratiops
5 3 distributed according to their probability of occurrence,
ﬂzﬁ_z V2 — (12) P(x), in the canonical ensemblsee Eq.(9)]. A steepest
dr 2m<=y ! ' descent quench can be performed for each sampled configu-
ration to test whether it lies in the triangular or linear basin,
where#.2/2m is the diffusion constant and¥ represents a as in the DQMC simulations. For more details on the PIMC
first-order forcing term. Asr—c, the solution to Eq(12)  method and on the definition ¢¥), the reader should see
approaches asymptotically the trimer's ground state wavéhe references listed above. In our calculations, 16 Fourier
function ¥,. A set of configurationgx} distributed with  coefficients{a,} are used per degree of freedom per particle.
probability ¥ (x) can be generated from this wave function Each PIMC run consists of 2610° configurations, of which
using a simple unbiased DQMC procedure, which compute500 were quenched as described above to deterRjnand
the asymptotic solution to E@12) by following the diffusive Py, .
motion of “replicas” in configuration space using random  For comparison with the quantum results, classical spatial
walk techniqueg23-27. In such a DQMC simulation, all probability distributions were obtained at finite temperatures
replicas have equal weight; reweighting must be done in orT>0 for the LJAT Ne; cluster using standard Metropolis
der to generate the distribution correspondingftg|?. Such  Monte Carlo procedures. At each value f 5X 10° con-
reweighting procedures are relatively elaborate and compuigurations were generated, with an acceptance ratio of
tationally expensive, and are therefore not pursued here. roughly 50%. Five hundred of these configurations were
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sampled(at intervals of 1000 MC stepsind were quenched
to determine the relative classical occupancies of the trian-
gular and linear minima on the PES.

: - : -2 2=1.0 -
Estimated statistical errors for both the classical and quan- I
tum occupancies were obtained at selected values by
binning and quenching 5000 configuratiofisstead of 50D -2.25F .
and calculating the triangular and linear occupancies for ten
blocks of 500 configurations. -
2.5h .
IV. RESULTS AND DISCUSSION: CLASSICAL TRIMERS
A. Potential surface topography
-2 Z=1.5 A

In the absence of the three-body AT term, the PES of the g
LJ trimer has a single global minimum corresponding to the § ___/
equilateral triangléD 3, geometry. By adding the three-body 5
term to the potential, we introduce a new paramédhat
we may vary continuously to modify the topography of the
PES. ForZ>0 the AT term stabilizes near-linear configura- 2.5+ .
tions of the cluster and destabilizes the equilateral triangle
[7]. For Z=0.4 the AT potential is strong enough that the
linear D, configuration, which is a saddle point f@r=0,
becomes a local minimum. This new local minimum is
higher in energy than thB 5, global minimum, and is sepa- oLk 729 0 -
rated from it by a “bent” transition state corresponding to an \ )
obtuse C,, isosceles triangle. AZ increases, the linear /
minimum becomes deeper and tBg, minimum becomes -2.25
shallower, until atZ=1.8 the linear structure becomes the
new global minimum. ' |

Figure 1 depicts the reaction path for rearrangement be- 0.5 0 0.5
tween the two minima at selected values. Note that at
lower Z values, the isomerization coordinatehich corre-
sponds essentially to the bending normal mode ofGhe FIG. 1. Reaction paths for the LIAT trimers with) Z=1, (b)

transition statgexhibits much greater negative curvature asz—1 5 and(c) z=2. The energy along the reaction path is plotted
the cluster descends into the triangular minimum than it doeg, units of the LJ parametes; progress along the reaction path

T
{

Reaction path length

for descent into the linear minimum. (x) is measured in units of/m, wherem and ¢ are the LJ pa-
rameters given in Table |. The saddle point isxat0; positivex
B. Liapunov exponents values correspond to the triangular basin and negatiwalues

. o . i _ correspond to the linear basin. The energy of the saddle point is
Figure 2a) shows the distribution of findk-entropy val 2,076, —2.04%, and —1.98% for Z=1, 1.5, and 2, respec-

uesK=A\;+ A\, obtained from a batch of 100 trajectories for tively.
the Ar; trimer with Z=1 at E=—1.6%. Each trajectory
represented in this figure begins from initial conditions for The multimodal nature of theK-entropy distribution
which a steepest descent quench leads tdtheminimum.  shown in Fig. 2Zb) suggests that the batch of trajectories
For comparison, Fig. ®) shows the distribution of finaK initiated from within the linear basin does not sample a
entropies obtained from a batch of 100 trajectories for thesingle, ergodic component of phase space. Further evidence
same cluster at the same energy, but using trajectories thédr this hypothesis comes from a closer examination of the
are initiated from coordinates for which quenching leads tdrajectories themselves. We find that several of these trajec-
the linear minimum. The regions of configuration space fortories remain in the linear basin for the entire span of 10
which quenches lead to particular stationary points are théme steps, despite the fact thatat — 1.81¢, the cluster has
“basins of attraction” of these structures. Such basins havenough energy to escape from this regiea seen from Fig.
previously been visualized for triatomic systems in a differ-1). These “trapped” trajectories are responsible for the two
ent contex{33,34] and feature in a new global optimization peaks shown in Fig.(®) at low values ofK.
algorithm described elsewhef85). In contrast, the trajectories that begin in the linear basin
We see immediately that there are significant differencedut ultimately cross over the saddle separating the two
between the two batches of trajectories. Those trajectoriesinima haveK-entropy values that are similar to those for
beginning in the triangular basin give rise to a unimodalthe trajectories, which begin in the triangular basin, and
distribution of K-entropy values peaked arourifl=1.1  which are clustered around~1.1 bits/ps. The trajectories
bits/ps. TheK-entropy distribution for the trajectories initi- that do cross the saddle, whether they begin in the linear or
ated in the linear basin, however, is distinctly trimodal, withthe triangular basin, make a few dozémypically 40—60Q
peaks aK~0, 0.2, and 1.1 bits/ps. passes across the saddle during the<tép trajectory.
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0.3 1.5 T T T T T
0.25F (a) n (a)
0.15F ]
0.1r B 0.5k -
_ >
0.05 &
o)
0 I ] 1 I H l/'/'
6.2 0.4 0.6 0.8 1. 1.2 2 0
o
K entropy o (b)
0‘3 l' - % |
0.25 (b) .
0.2k _ 0.5} -
0.15} -
oL ] | [T, | Sap——
0.1F ] -2.1 -1.8 -1.5 -2.1 -1.8 -1.5
0.05}f - Energy
0 L 14 ';'6 T3 1' T FIG. 4. K-entropy values representative of the various compo-
0.2 0. : ’ ) ’ nents of phase space in LJAT Arat (a) Z=1 and(b) Z=2. The
K entropy left panel of each figure shows tlike entropy for the strongly cha-

otic trajectories initiated in the triangular basin. The right panel of
each figure shows the-entropy values for the two or three regions

of phase space sampled by trajectories initiated in the linear basin.
Error bars extend one standard deviation in each direction. Lines
have been drawn to guide the eye and have no physical significance.
TheK entropies are given in units of bits/ps and the energy in units

FIG. 2. Distribution of finalK-entropy valuesK=x,+\, for
Z=1 LJAT Ar; at E=—1.6%. (a) Distributions for 100 trajecto-
ries initiated in the triangular basith) Distributions for 100 trajec-
tories initiated in the linear basin. Tlkeentropy is given in units of
bits/ps.

We next look more closely at the lot-entropy portion
of Fig. 2(b) to determine whether the apparent bimodality of
this part distribution is real or an artifact. We do this by space atE=—1.6%. These are(1) a strongly chaotic
computing final Liapunov exponents for a larger set of tra-(K~1.1 bits/p$ region of phase space that spans both con-
jectories(168 in al) atE= — 1.6%, which begin in the linear figurational basins and in which trajectories rapidly move
basin and remain there for 1@me steps. The distribution of between these basing) a weakly chaotic K~0.2 bits/p$
K values thereby obtained is shown in Fig. 3. From theséegion of phase space associated with trajectories that remain
results, it appears that the peak locateKat0.2 bits/ps is  trapped in the linear basin for at least®lime steps(or 1
genuine. ng; and (3) an essentially quasiperiodic region of phase
The results presented in Figs. 2 and 3 suggest that thgpace also associated with trajectories that remain trapped in
Z=1 LJAT Ar; cluster has three main regions of phasethe linear basin for 10time steps or more. Broadly similar
results are obtained f&=1 Ar; at other energies, and for
0.06 theZ=2 Ar; cluster and th&=0.5 andZ= 1.5 Xe; clusters
across a range of energies, as shown in Figs. 4 and 5.
To produce these figures, we have calculatedkhen-
. tropy K=\,+\, for a batch of trajectories and examined
probability distributions folK similar to those shown in Fig.
2. The “end points” of the peaks in thesedistributions are
determined by locating the local minima in the derivative of
the cumulative probability distribution fdk. Then an aver-
ageK value and standard deviation for each peak is com-
puted from those trajectories that make up that peak. Figures
3 0.4 4 and 5 show the averagdé values obtained in this fashion.
In each case we begin with a sample of 100 trajectories
initiated in either the triangular or linear basin. The trajecto-
FIG. 3. Distribution of finalK-entropy values foz=1 LJAT  ries that begin in the triangular basin always produce a uni-
Ar; at E=—1.6% for a set of 168 trajectories that begin in the modal distribution ofK values. At high energies, we find
linear basin and remain trapped there foP line steps. TheK three peaks in th&-entropy distribution for trajectories that
entropy is given in units of bits/ps. begin in the linear basin: one at large positkesalues, one

K entropy



56 EFFECTS OF THREE-BODYAXILROD-TELLER) ... 369

We first estimate the relative weight of the triangular and
linear basingdenotedW,; andWj;,,) at each energy from a
microcanonical samplfl5,16 of 10* configurations. From
_ the binning procedure just described, we can estimate the
fraction of trajectories that, when initiated in the linear basin,
fall into the weakly chaotic and essentially quasiperiodic re-
gions of phase space. L&, and Wy, i, denote these
fractions. (At energies where no weakly chaotic portion of
phase space is observed, we ¥&j. i,=0.)

The relative sizes of the three regions of phase space—the
0 strongly chaotic region that spans both bagiwgh weight
(b) W), the weakly chaotic region associated with the linear
basin(with weightW,,.), and the nearly quasiperiodic region
1.0 - associated with the linear bagiwith weight W,,)—are then
computed as follows:

’\‘\H B qu: WIianp,Iini

'/|/' WWC: Vvlinch,Iina (15)
| N | 1
0 —2I.1 —1'.8 —l'.5 -2.1 -1.8 -1.5

(a)

{
1

K entropy
I

sneray Woe= 1~ Wep— Wiy
FIG. 5. K-entropy values representative of the various compo-The results are summarized in Table Il. They show that for
nents of phase space in LJAT Xat(a) Z=0.5 and(b) Z=1.5. See  Z=1, the quasiperiodic and weakly chaotic regions occupy a
the caption for Fig. 4 for further details. substantial fraction of the entire phase space of the LJAT
trimers. Although these two regions of phase space decline
at small positiveK values, and one near zero. At lower en- somewhat in importance as the energy increases, we see that
ergies, however, we typically observe only two peaks foreven for energies well above the saddle point some 5—10%
these trajectories: one at large values and one at nearly of the total phase space of tHe=1 trimers is quasiperiodic
zeroK values. The peaks with large values are associated or only weakly chaotic. In Sec. V we will show that similar

with trajectories that cross over ti&, saddle point separat- hehavior is observed in the quantum clusters.
ing the basins on the PES, while the peaks with sriall

values are associated with trajectories that remain trapped in
the linear basin. Each peak is represented by a single point in
Figs. 4 and 5. The LJAT trimers have three vibrational degrees of free-

For three of the trimersZ=1 and Z=2 Ar;, and dom (DOF). The phase space structure of Hamiltonian sys-
Z=1.5 Xe;—at those energies where thri€eentropy peaks tems with three or more DOF is still incompletely under-
are observed for trajectories initiated in the linear basin, westood. It is clear that in any system with mixed phase space,
have examined a larger sample of 1000 trajectories begirthe regular(or quasiperiodig and chaotic regions of phase
ning in this basin. Using only those trajectories in thisspace must be disjoint; what is not clear is whether the cha-
sample that remain trapped in the linear basin fot tilie  otic region of phase space can be further subdivided. Wig-
steps(typically 10% to 40% of the samplewe recompute gins[36] showed that geometrical structumsyexist in the
K values for the weakly chaotic and quasiperiodic regions ophase space of three-DOF systems, which divide the phase
phase space. space into disjoint regions separated by pafbal‘porous”)

For comparison with the quantum results presented bebarriers. In a study of the three-DOF He—~lan der Waals
low, we have estimated the fraction of phase space assoatomplex which used a physically reasonable Hamiltonian,
ated with the various regions of phase space represented iowever, Gillilan and Ezrf37] could not locate these struc-
Figs. 4 and 5. These calculations are performed as followsures.

C. Phase space structure

TABLE II. Relative weight of the quasiperiodic and weakly chaotic components of phase space in LIAT
trimers. The error arising from the finite size of our trajectory batches is estimatedzt®I0:3.

Z=0.5 Xe; Z=1 Ar, Z=15 Xe; Z=2 Ar,
E (e) W Wae E() Wp Wee E( Wgp Wy E(6) Wy Wy

—2.028 001 00 -—-2047 005 00 -—-2028 033 00 -—-1958 077 0.0
—1.900 001 00 -1929 011 00 —-1900 033 00 -—-1839 054 00
—-1.772 001 001 -1810 0.04 0.06 —1.772 0.08 0.16 —1.720 0.05 0.29
—1.645 0.01 0.01 -1690 0.02 0.05 —1645 0.03 0.16 —1.601 0.04 0.18
—1.517 001 0.01 -1571 0.01 0.04 —1.517 0.01 0.08 —1.482 0.02 0.08




370 CHAKRAVARTY, HINDE, LEITNER, AND WALES 56

The results in Figs. 4 and 5 and in Table Il indicate thatrelative sense, and it is plausible that YE’s trajectories have
the regions of phase space we have termed “weakly chaescaped the “sticky,” weakly chaotic region of phase space
otic” and “strongly chaotic” are separated by some kind of and more closely represent the-c Liapunov exponents of
barrier. Indirect evidence suggests that the barrier is poroughe LJAT system.

Note that the highk peaks shown in Fig. 2 are relatively Finally, we note that our results, and those obtained by
broad and are skewed toward lowérvalues. The trajecto- YE, can be rationalized in terms of a model based on the
ries that are responsible for this skewing are those that exdegree of negative curvature of the PES,45. As Fig. 1
plore both the triangular and linear basins on the PES, bughows, the basin associated with near-linear configurations
which at some point enter the linear basin and remain therf the LJIAT trimers exhibits relatively weak negative curva-
for a substantial period of time. This indicates that transporture near the saddle point, while the triangular basin is
between the weakly and strongly chaotic regions of phasétrongly negatively curved near the saddle. We have previ-
space is possible. Nevertheless, the barrier between these fiIsly observed44,45 a strong correlation between the de-
gions is fairly effective at separating weakly chaotic behaviordree of negative curvature on the PES and the magnitude of
from strongly chaotic behavior, because a large number of System’s local Liapunov exponents. This simple negative
weakly chaotic trajectories remain trapped in the linear basiurvature model predicts that the triangular basin will give
for as long as 1 ns. rise to more strongly chaotic behavior than will the linear

Inspection of the trapped trajectories shows that they arfasin, in agreement with our results. &sincreases, the
undergoing predominantly bending motion localized aroundiegree of negative curvature in the linear basin increases,
the linear minimum energy geometry. The behavior of thesavhile that in the triangular basin decreases; this is in accord
trajectories is thus qualitatively similar to that of the stablewith YE's findings in the intermediatg range.

“horseshoe” periodic orbit, which has been observed in sev-

eral studies of H* [38—40. We hypothesize that an analo- V. RESULTS AND DISCUSSION: QUANTUM TRIMERS

gous stable periodic orbit exists in the LJAT trimers for
Z=1, and that it is surrounded by a quasiperiodic “sheath”

in phase space. The region of phase space we have identifi . . . L
as weakly chaotic is likely to be located just outside this§§AT trimers follow well-defined trajectories in phase space.

sheath, and is separated from the remaining strongly chaot%uch a viewpoint is ultimately mcompatlb_le with quantum
portion of phase space by a partial barrier or phase spa echar'uc's,. where the concept Of. a trajectory s abs.ent.
bottleneck. Trajectories that are initiated inside this weakl ence it Is important for us to consider the extent to which
chaotic region of phase space, or which enter it from thethe classical picture presen_ted above must be modified when
strongly chaotic region, remain trapped for long periods quuantum clusters are considered.

time because the interface between the weakly chaotic and
quasiperiodic regions of phase space is “sticyf1].

Yurtsever and ElImadi2] have recently studied the cha-  We begin by assessing the role of zero-point effects in the
otic dynamics of LJAT trimers with LJ parameters and vibrational ground state of the LJIAT Ndrimer, which has
atomic masses chosen to represegtollisters. After an ap- the largesty value of all the clusters studied here and which
propriate rescaling of the time variable[43], their results therefore is expected to show the most pronounced quantum
can be compared where they overlap with oursZat0.5 phenomena. Using the DQMC techniques outlined above, we
and Z=1. The relevant findings of Yurtsever and Elmacihave computed as a function @f the fraction of replicas
(YE) are as follows{(1) in the range 6<Z<1, high-energy representing the ground state that are located in the triangular
(E=—1.95¢) trajectories are strongly chaotic, whether theyand linear minimaf; and fy;,, for the vibrational ground
are initiated in the linear basin or in the triangular basin; andstate of the Ng cluster. Figure @) shows howf,; varies
(2) in the intermediateZ range 0.25Z<0.75, low-energy with Z for the Ne; cluster. The classical occupancies are also
(E< —1.95¢) trajectories are weakly to moderately chaotic. presented in this figure for easy comparison.

Furthermore, in this range & andE, the degree of chaos The point at whichf,;=0.5 indicates a switchover from a
exhibited by trajectories initiated in the linear basin increasepredominantly triangular geomettwheref;>0.5) to a pre-
as Z increases, while the degree of chaos exhibited by tradominantly linear geometrgwheref,;<0.5). In the classical
jectories initiated in the triangular basin decreaseg as- Ne; cluster, this switchover occurs @~1.8, and can be
creases. understood in terms of the deepening of the linear minimum

YE find that the long-time, low-energy behavior of their on the PES with increasing, as shown in Fig. 1. In the
clusters depends strongly on the initial geometry; this lendsjuantum cluster, the switchover occur&at 2.4, the shift of
support to the picture of the phase space structure that wiae switchover point to highez values reflects the balance
have outlined above. At high energies, though, YE observéetween the depths and the zero-point energies of the two
only strongly chaotic dynamics, in apparent disagreementinima.
with our qualitative picture. This discrepancy can be partially =~ Similar quantum delocalization effects are observed at fi-
reconciled by considering the characteristic time scales fonite temperatures. Figurgl§ shows howP,,; varies withZ
motion in YE's C; clusters and our rare-gas trimers. Thefor the classical and quantum Nelusters aff=2 K. (Very
classical trajectories computed by YE and by us are similasimilar results are obtained @t=1 and 1.5 K; forT=3 K,
in duration(roughly 1 n3; however, the vibrational frequen- though, the quantum cluster begins to evaporate, so the high-
cies of G; clusters are much higher than those of rare-gagst temperature used in the PIMC studies Was2 K.) This
trimers. Therefore the Ltrajectories are much longer in a figure indicates that the classical switchover occurs at

The classical dynamical results presented in the previous
ction rest on the validity of the notion that the atoms in

A. Quantum Monte Carlo calculations
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TABLE Ill. Ground state energie@n units of €) of the quantum
LJAT trimers for several values. Both DVR and DQMC results
are given for Ng; only DVR results are given for the heavier clus-
ters. The ground state configuration of each trimer is roughly an
equilateral triangle; the classical energy of thg, global minimum
on the potential surface is given for comparison.

Cluster Z=0 Z=0.5 Z=1 Z=15
Ne; (DVR) -1718 —1.591 -—-1479 —-1.379
Ne; (DQMC) —-1719 —-1585 —1473 —1.374
Ar3 —2553 —2.358 —2181 —2.020
Krs —2.761 —2548 —2355 —2.179
Xej —2.844 —2626 —2426 —2.235
Classical —-3.000 —-2.757 —2514 2271

Table IIl gives the energies of the vibrational ground
states of the four trimers at theZevalues. For comparison,
the ground state energies computed by DQMC are also
given, as are the energies of the glotiekngula) minimum
on the PES. We see that the quantum ground state energies
are all higher than the classical minima; this difference is
greatest for the Ngcluster(which has the largesy value

0.5 1 1.5 2 2.5 3 and smallest for the Xgcluster, which comes as no surprise.
7 As Z increases, the quantum ground state energies for the
heavier clusters approach the energies of the classical

FIG. 6. (a) TheZ dependence dffy; for LJIAT Ne3, showing the  minima more closely. This can be understood qualitatively
degree of localization in the triangular minimum of the ground statefrom the reaction paths presented in Fig. 1; the cluster’s clas-
wave function.(b) The Z dependence oPy; , the relative occu-  sjcal vibrational frequencies near the triangular minimum de-
pancy of the triangular minimum, for LJIAT Neat T=2 K. Esti-  crease ag increases, and we expect that the magnitude of
_ma'ted error bars_are less thar0.04 for all values ng. Points the zero-point energy will likewise decrease. We note, how-
indicate the classical values 6f; andP,; for comparison. ever, that the effect of increasirg is rather modest for

Nes. This suggests that & increases, the increasing occu-
Z~1.8, and the quantum switchover &t=2.3. The differ-  pancy of the higher-energy linear minimum in this clugtes
ence between the quantum and classical switchover valughown in Fig. 6 partially offsets the decrease of the vibra-
indicates the importance of quantum effects at these temperéenal frequencies at the triangular minimum because it tends
tures. Moreover, the switchover values computed ffgiat  to increase the potential energy.

T=0 and fromP,; at T=2 K are very similar, indicating This simple rationalization of the decrease in the zero-
that ground state occupancies of the two minima must b@oint energy with increasing raises the question of how
close tof,; andfy,. closely the energy of the quantum ground states can be esti-
mated using a normal mode approach. For the L&, Ar
B. DVR calculations Kr 5, and Xe; trimers, the energies of the vibrational ground

states were found to be very close to those obtained, using a

The diffusion and path integral Monte Carlo results indi- simole separable normal mode approximation. from the clas-
cate that we must take quantum effects into account to prop- b b bp '

. . , sical vibrational frequencies at the triangular minimum on
erly describe the behavior of the BIEJAT trimer. Although the PES22]. Table IV gives normal mode estimates for the
we expect that the clusters with smallvalues will behave

. rTground state energies of the four LJIAT trimers at varidus
somewhat more classically, we have computed and exany, )
values. Note that the normal mode estimates are always

ined vibrational eigenstates for all four of the trimers studied, . .
i ! . : higher than the actual ground state energies, and the agree-
here, for comparison with both the classical trajectory results

presented in Sec. IV and the quantum results obtained earlier

[22,46,47 for trimers bound by LJ potentials alone. These TABLE IV. Normal mode estimatesin units of €) for the
calculations were performed using the DVR technique deground state energies of the quantum LJAT trimers for sexeral
scribed above withiZz values of 0.5, 1, and 1.5. At these Values.

values ofZ, both the equilateral triangle and the linear con-

figuration are minima on the PES; however, the former re- z Nes Ars Kr's Xes

mains the global minimum throughout this rangeZofalues. 0.0 ~1.506 ~2532 —2.754 —2.844
This permits us to exploit th® 5, symmetry of the equilat- 05 —1.231 _2.081 — 2507 — 2507
eral triangle in the DVR calculations. We note that for these 1 g —0.970 —2.030 —2.260 —2351
trimers, which are all composed of bosons, onlyAtjdevels 15 —0.704 ~1.780 —2.013 —2.106

are symmetry allowed in thé=0 vibrational manifold.
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FIG. 7. Selected low-lying vibrational wave functions for the 0.5 Arg trimer, shown as contour diagrams on thed) plane, which
slices through the wave function gt=0. Panel@) depicts the ground state € 0), and panel$b) through(f) show excited states=1, 2,
5, 6, and 7 respectively.

ment between the two values becomes increasingly poor dsangle, whiled= 7r corresponds to the linear geometry. Fig-
Z increases. ure 7e) depicts the lowest-energy “linear” wave function of
One possible explanation for this behavior is that the northe Z=0.5 Ar; cluster, and Fig. &) shows the lowest-
mal mode approaclieven when corrected for anharmonic energy “linear” state for theZz=1.5 Ar; cluster. It is clear
vibrational effect§22]) underestimates the anharmonicity of that the wave function is more localized around the linear
the triangular minimum at highet values; based on an anal- configuration at the higher value @f as expected. Note also
ogy with the diatomic Morse potential, this anharmonicity iShat |ess vibrational excitation is required to reach the
expected to lower the energy of the vibrational ground Stat%west-energy linear wave function at the higievalue; for

F!gure 1 sh(_JV\_/s that_az increases and _the energy .Of thg Z=0.5, the lowest linear state is the sixth excited state, while
triangular minimum increases, the basin surrounding thlsfor Z=15 it is the first

minimum becomgs wider and increasingly anharmonic. A similar graphical analysis of the vibrational states of alll
Previous studies of the LJ clusters showed that for parfourtrimers allows us to determine the energies of the lowest

ticular vibrational stategor groups of states in narrow bands . . . 9 .

of energieg the probability density of the cluster's vibra- states, which may be_descrlbed as linear. The energies of

tional wave function was concentrated near the linear cont'€S€ States are listed in Table V. We see that in theatd

figuration[22]. The energy of the lowest stater group of Xej trimers much less V|b_rat|onal excitation is required to

stateg among these was therefore identified as the quanturffach the lowest-energy linear state at highvalues; the

mechanical equivalent of the classical transition state energy\€s cluster, however, is not as sensitive to change&,in

For the LJAT trimers we also find vibrational states that arePresumably because its low-lying wave functions are highly

dominated by linear configurations; since the linear geometrylelocalized at alZ values. Graphical analysis of the he

is a local minimum on the PES fa@=0.4, we anticipate that eigenstates confirms this, and indicates tha¥ dacreases,

the tendency for the wave functions to peak near the lineathe ground state of the Nerimer becomes more delocalized

configuration will be accentuated fa@r values in this range. across both the triangular and linear minima. This is in ac-
Figures 7 and 8 show that this is indeed the case. Here weord with the DQMC results shown in Fig. 6.

plot (in the APH coordinate systenseveral low-lying vibra- For the LJ cluster§whereZ=0), it was found that the

tional states for LJAT Ag at Z=0.5 andZ=1.5; the plots ratio between the energies of the vibrational ground state and

are cuts through the three-dimensional wave functions ahe lowest “linear” wave function was always close to the

x=0. On these plotsp=0 corresponds to the equilateral value 0.677, which is the ratio between the classical potential
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FIG. 8. The six lowest vibrational wave functions for the 1.5 Ar; trimer, shown as contour diagrams on tleed) plane, which slices
through the wave function at=0. Panel(a) depicts the ground state€0), and panelsb) through(f) show excited states=1 through
n=>5.

energies of the triangular and linear stationary points on thelusters, the agreement between the quantum and classical
LJ PES. We have computed the ratios between the vibraatios is best at small and worst aZ=1.5.
tional ground state and the lowest linear state for the four The linear geometry is a local minimum at tEevalues
trimers and the threg values we have examined; these ra-we have studied; we can therefore once again use a normal
tios (along with the ratio of the classical energiese listed mode approach to estimate the energies of the lowest linear
in Table VI. We see that the energy ratios for the quantunmwave function, and these estimates are listed in Table VII.
LJAT clusters are typically quite close to their classically The normal mode estimates are quite good at all of Zhe
predicted values. The agreement is poorest fog,Niee clus-  values studied for the At Krs, and Xe; clusters, but rather
ter that shows the largest quantum effects; for the heavigvoor for the Ng cluster. The relatively poor agreement be-
tween the normal mode model and the exact energies for
TABLE V. Energies(in units of €) of the lowest-energy “lin- Nez is not too surprising given that this cluster deviates
ear” wave functions of the quantum LJAT trimers for seveZal strongly from the classical picture at @lvalues. For all four
values. The classical energy of the linear stationary point on thelusters, however, the normal mode estimates and exact

potential surface is given for comparison. The numbers in parentheguantum energies are in much better agreement for the linear
ses indicate the index of the vibrational state for each linear waveonfiguration than for the triangular configuration.
function, withn=0 being the ground state.

TABLE VI. Ratios between the ground state energy and the
energy of the lowest “linear” wave function of the quantum LJAT
00 —-1.139 -—1.731 -1.867 —-1.923 —2031 trimers at several values. The classical energy ratios are given for

(n=2) (n=10) (=32) (n=79) comparison.
05 -—-1.187 -—-1.765 —1910 -—1.964 —2.075

z Nes Arg Krg Xej Classical

(n=1) (n=6) (n=18) (n=44) z Ne; Ar, Krs Xes Classical
1.0 -—-1.185 —1.794 —-1946 —2.007 —2.119 0.0 0.663 0.678 0.676 0.676 0.677
(n=1) (n=3) (n=8) (n=19) 0.5 0.746 0.749 0.750 0.748 0.753
15 —-1194 —-1829 —1986 —2.044 —2.164 1.0 0.801 0.823 0.826 0.827 0.843

(n=1) (n=1) (n=3) (n=5) 15 0866 0905 00911  0.915 0.953
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TABLE VII. Normal mode estimategin units of €) for the
“linear” state energies of the quantum LJAT trimers for several
Z values.

z Ne, Ary Krg Xes
0.0 —1.403 ~1.718 —1.897 ~1.926
0.5 —0.990 ~1.731 —1.895 —1.960
1.0 ~0.992 —-1.762 -1.932 —1.999
1.5 —1.005 —1.796 -1.971 —2.040

We see from Figs. 7 and 8 that the low-lying vibrational
states of bothZ=0.5 andZ=1.5 Ar; are concentrated
around the horseshoe orbit described previously. Similar re-
sults are obtained for the heavier trimers. The low-lying
states in the Ag, Krz, and Xe; clusters all exhibit very
regular and structured nodal patterns, as seen in these figure
These nodal patterns allow us to characterize the vibrationa
motion in these states, even if we cannot go so far as fc
assign quantum numbers to the eigenstates. For example, tt
second and third excited states shown in Fig. 84er1.5
Ar 5 are bending modes near the triangular and linear con
figurations, respectively. At higher energiésot shown
here, we observe well-defined stretches localized near the
linear configuration.

At even higher energies, though, the nodal patterns of the
heavier trimers’ eigenstates become increasingly irregular
Figure 9 depicts three vibrational stateszo£1.5 Xe; near
the energyE= — 1.74%. It is interesting to note that all three
states remain concentrated along the horseshoe orbit despi
their irregular nodal patterns. The finer details of the three
wave functions, however, are different; the state in Fig) 9
is localized predominantly around the linear configuration,
while that in Fig. 9c) is mostly triangular. The intermediate
state shown in Fig. ®) is spread along the horseshoe orbit,
but appears to be mostly localized around @yg transition
state.

We now turn to the question of whether the mixture of
chaotic and regular classical dynamical behay®ec. I\V)
persists in the quantum clusters. To answer this question, w:
perform a statistical analysis of the vibrational energy spec-
trum of the Xeg cluster atZ=1.5. We choose to analyze the
Xej4 cluster because it has the highest level density of all of
the trimers studied here, and is therefore most appropriate fo
an investigation of the spectral statistics. The largealue
was chosen to emphasize the effect of the three-body AT
term on the vibrational spectrum. Recall that previous work
has shown that the energy level statistics of the quantum L.
Ar 3, Kra, and Xe; clusters are close to those predicted by
random matrix theonf22]; this finding is in accord with
studies that suggest that the classical Ad cluster(which
hasZ=0) is largely chaotic at all but the lowest energies
[14]. (However, we note that an analysis of large numbers of
independent classical trajectories, like that presented in Sec.
IV, was not done for the LJ Ay cluster)
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FIG. 9. Three highly excited vibrational wave functions for the

We have obtained 273 converged energy levels for the—1.5 xe, trimer, shown as contour diagrams on tted) plane,
Z=1.5 Xe; cluster in the range-1.88<E<—1.42; the  which slices through the wave functionyat 0. Panela) shows the
distribution of energy level spacings and the spectral rigidityexcited staten=84 at E=—1.75C; panel (b) shows the state
were computed for this stretch of energy levels, and the ren=86 at E=—1.745%; and panel(c) shows the state=87 at
sults are plotted in Fig. 10. We note that this range of enerE=—1.742.
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ries in Sec. IV, and suggests that the quantum LJAT trimers
N @) incorporate the essential features of the mixed phase space
picture developed there.

VI. CONCLUDING REMARKS: IMPLICATIONS
OF MIXED PHASE SPACE

We find that the classical phase space of the LJIAT trimers
can be divided into three regions that are qualitatively differ-
ent: one region is strongly chaotic, one is weakly chaotic,
and one is quasiperiodic. This observation is characteristic of
1 2 3 the phase space structure of a variety of few-degree-of-

S freedom conservative systems, in which the weakly chaotic
region of phase space is associated with trajectories that ex-
hibit intermittent dynamics. These intermittent trajectories
(b) spend long periods of time in the weakly chaotic region of
A (L) phase space, punctuated by “bursts” of highly chaotic be-

3 havior as the trajectories flow into the strongly chaotic region
of phase space.

This type of intermittent dynamical behavior has been the
focus of a number of previous studies, both of low-
= dimensional Hamiltonian magd#1,48,49 and of the classi-
cal dynamics of the hydrogen atom in magnetic fidlsig].
Sepuveda et al. [51] identified a correspondence between
the distribution of local Liapunov exponents and the power
5 10 15 20 spectrum of classical trajectories that exhibit intermittency:

L quasiregular portions of a trajectory give rise to very small
exponents that correlate closely with the sharp, narrow peaks
. ) of the power spectrum, while strongly chaotic portions of a
ings for the 273 states in the energy range.88e<E < —1.42 for trajectory yieldplarger local Liapunogvyexponentz and corre-

the Z=1.5 Xe; trimer. The histogram represents the actual distri- - ,
bution of level spacings; the dotted and dashed curves are thléate with the spectrum’s broader features. The broad and nar-

Wigner and Poisson distributions respectively, and the solid curvéov.v pea!(S that coexist in the power spectrum of intermittent
is the Berry-Robnik prediction fog=0.88.(b) The spectral rigidity trajectories in a model system were obserid] to closely
A4(L) for the same set of levels as (a. The middie solid curve is resemble those features found in power spectra of small mo-
the result computed from the actual levels; the lower and uppelecular systems such asjH and Na. Presumably these
solid curves are the random matrix and Poisson predictions, respefdolecular systems, like the LJAT trimers we have studied,

tively. The dashed line is the Pandey interpolation vgjta0.88. exhibit dynamical intermittency.
How might this intermittency be reflected in the energy

gies is well above the classical transition state energyevel spacing statistics of quantum mechanical LJAT trim-
E=—2.043 for Z=1.5. ers? In the semiclassical limit(~0), weakly chaotic phase
Figure 1@a) shows the actual distribution of level spac- space regions contribute “irregular” levels to the energy
ings P(S) and compares it to the Wigner and Poisson distri-level spectrum, because classical trajectories passing through
butions. It is clear that the actual distribution is much closerthese regions are ultimately unstable. However, in the quan-
to the Wigner distribution(obtained from random matrix tum mechanical clusters, the energy level spacing may be too
theory), although the agreement is not perfect. To quantifylarge for such a weak instability to be reflected in the eigen-
the deviation of the actu®(S) distribution from the Wigner states.
limit, we have fitted the actual distribution to the Berry- Indeed, for the heaviest trimer in our study, g{¢he level
Robnik interpolation formula, Eq7). The best agreement is spacing is on the order of 1 cnt, which is too large for the
obtained when the fraction of classical phase space occupiexigenstates to reflect the irregularity of a trajectory that
by chaotic trajectories ig|=0.88. Figure 1(b) shows the spends about 1 ns undergoing essentially regular motion
spectral rigidity As(L) for the Z=1.5 Xe; cluster. Once [52]. Thus for all of the quantum LJAT trimers studied here,
again we find that the cluster lies between the RMT andhe phase space region that we have characterized as weakly
Poisson limits, but closer to the RMT limit. The Pandeychaotic actually contributesegular dynamical character
interpolation formula, Eq(8), gives a good fit to the ob- to the energy level spectrum. For example, the value of
served spectral rigidity wheq is set to 0.88. g=0.88 obtained for the Berry-Robnik level spacing param-
These results suggest that in the energy rangeter for Z=1.5 Xe; in the energy range-1.8&<E<
—1.88<E=< —1.42%, the classical phase space of thezXe —1.42 can be interpreted to mean that at these energies,
trimer at Z=1.5 is predominantly chaotic, but also has asome 12% of the phase space is filled dither regular or
small regular componeigabout 12% of the total phase space weakly chaotic trajectories.
volume. This picture is qualitatively similar to that deduced  This conclusion is consistent with the classical results pre-
from the analysis of classical molecular dynamics trajectosented in Table Il. This table shows that for energies above

0.5

FIG. 10. (a) Distribution of nearest-neighbor energy level spac-



376 CHAKRAVARTY, HINDE, LEITNER, AND WALES 56

E=—1.65%, the quasiperiodic portion of the classical phaserevealed in the wave functions and the finite temperature
space ofZ=1.5 Xe; makes up less than 5% of the constantproperties of the quantum clusters. Both classical trajectory
energy surface; another 10—15% of the phase space is occsiudies and an analysis of the energy level spacings of the
pied by the weakly chaotic region. Most of the quantumqguantum clusters show that the addition of the three-body
energy levels we have analyzed fdre=1.5 Xe; lie above AT term to the LJ pair potential creates a system whose
E=—1.6%, and deviations from random matrix predictions phase space is mixed, with strongly chaotic, weakly chaotic,
for this system would therefore arise largely from states corand quasiperiodic regions, over a large range of energies.
responding to weakly chaotic regions of phase space. Because the importance of the AT term can be controlled
More subtle properties of the classical rare-gas trimersising the adjustable paramet@y these LJAT clusters may
cannot be observed in their quantum counterparts withoute good model systems for further study of mixed phase
taking the trimers much farther towards the semiclassicaspace in classical and qguantum mechanics.
limit. By tuning # to smaller values, we would be able to
detect the influence of intermittent dynamical behavior in the
guantum trimers. One effect would be to increapdo a
value corresponding to the fraction of phase space that is D.M.L. acknowledges support from the National Science
either strongly or weakly chaotic. By varyin§ across a Foundation via Grant No. CHE-9002637, awarded in 1991,
wide range of values, we could also study the influence oR.J.H. acknowledges support from NSF Grant No. CHE-
classical periodic orbits on the eigenstates of the quantur8203634, awarded in 1992. R.J.H. also thanks the Cambridge
trimers, such as Taylor and co-workdis3] have recently  University Chemistry Department for the hospitality ex-
done for HG,. tended to him during a visit in October 1993. C.C. is grateful
Our study has revealed a number of similarities betweemo Churchill College, Cambridge for financial support for the
the classical LJAT trimers and their quantum counterpartsyear 1993-1994. D.J.W. gratefully acknowledges financial
The structures of minima and saddle points on the PES arsupport from the Royal Society of London.
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