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Effects of three-body„Axilrod-Teller … forces on the classical and quantum behavior
of rare-gas trimers
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We have studied the structure and dynamics of nonrotating rare-gas trimers bound by a potential that
combines two-body Lennard-Jones interactions and three-body Axilrod-Teller~triple dipole! interactions. Both
classical and quantum trimers are examined. We investigate the onset and development of chaotic dynamics in
the classical clusters by computing the Liapunov exponents associated with various phase space trajectories. In
our studies of the quantum clusters, we examine the structure of the vibrational eigenstates, the statistical
properties of the distribution of energy levels, and the average cluster structure at finite temperatures. Both
avenues of research are principally aimed at understanding the effect of the three-body term on the clusters’
behavior. We find that the three-body term gives rise to an integrable or nearly integrable component of phase
space that is associated with the clusters’ linear configuration and that manifests itself in both the classical and
quantum properties of the trimers. The finite temperature structures predicted for quantum Ne3 clusters suggest
that over the range of parameters considered here, these clusters are sufficiently delocalized that properties
associated with the linear configuration should be readily observable, even at very low temperatures.
@S1063-651X~97!12107-9#

PACS number~s!: 05.45.1b, 36.40.Sx, 34.20.Cf, 03.65.Ge
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I. INTRODUCTION AND BACKGROUND

The structure and dynamics of weakly bound van
Waals molecules and clusters continue to be topics of ac
study in chemical physics, in part because of the relative e
with which such species can be investigated both experim
tally and theoretically, and in part because of the wide ra
of chemical and physical phenomena that can be better
derstood through such studies. These phenomena includ
nature of intermolecular forces, the onset of bulk thermo
namic behavior as a function of cluster size, the effect
three-body and many-body forces on the structure and
namics of nonrigid molecules, and vibrational chaos
weakly bound systems. References@1# and @2# contain
‘‘snapshots’’ of recent research on van der Waals comple

Some of the most thoroughly studied van der Waals s
tems are homogeneous clusters of rare-gas atoms. The
cal investigations of rare-gas clusters are particularly att
tive because these systems serve as benchmarks for stu
the effects of quantum mechanical behavior in weakly bou
systems. Rare-gas clusters from Hen to Xen are bound to-
gether by interatomic forces that are qualitatively and qu
titatively very similar when expressed in reduced un
Hence variations in the structure and dynamics of these c
ters can be largely attributed to quantum mechanical eff
arising from the wide range of atomic masses represente
the last column of the Periodic Table. For example, Hn
561063-651X/97/56~1!/363~15!/$10.00
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clusters are often cited as prototypical quantum clus
@3,4#, while the much heavier Xen clusters should behav
essentially classically. Furthermore, the importance of qu
tum statistics in van der Waals systems is readily explo
by comparing the behavior of3Hen and

4Hen clusters@5#.
In this paper we investigate the structural and dyna

ical changes in the homogeneous rare-gas trimers N3,
Ar 3, Kr 3, and Xe3, which result from the addition of a
strong three-body Axilrod-Teller~AT! term to the conven-
tional two-body Lennard-Jones~LJ! cluster binding poten-
tial. Both classical and quantum mechanical properties of
clusters are studied. The strength of the AT potential term
determined by a single adjustable parameter, which may
varied to generate a family of very different potential ener
surfaces. The combined Lennard-Jones-Axilrod-Te
~LJAT! potential thus presents us with a model system
which to explore how classical and quantum properties
van der Waals clusters are influenced by the topograph
the underlying potential energy surface~PES!.

We note that Hornet al. @6# have undertaken quant
um mechanical studies of the low-lying vibrational states
Ar 3 clusters using two- and three-body potential ene
terms that are substantially more realistic than the LJAT
tential we study here. Our aims, however, are quite differ
from those of Hornet al., who emphasize the need for spe
troscopic accuracy and state-by-state assignment of the
brational eigenstates. We are primarily concerned with
363 © 1997 The American Physical Society
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364 56CHAKRAVARTY, HINDE, LEITNER, AND WALES
derstanding the relationship between the shape of the
and the classical and quantum properties of rare-gas trim
The combined LJAT potential is ideal for these purpos
because of the control it gives us over the topography of
PES.

We begin by reviewing some theoretical and compu
tional aspects of our work in Secs. II and III; we then pres
results for the classical and quantum LJAT trimers in Se
IV and V, respectively. Throughout, we compare our resu
with earlier findings for trimers bound by LJ forces only. Th
results presented here suggest that the phase space of
trimers is of a mixed nature, with both chaotic and regu
components. We conclude with a brief discussion of the
plications of this observation in Sec. VI.

II. THEORETICAL CONSIDERATIONS

A. Classical trimers

The classical Hamiltonian for LJAT trimers with atom
massm is

H5
1

2m(
i51

3

pi
214e (

i, j51

3

@~s/r i j !
122~s/r i j !

6#

1Zs9eF113 cosu1cosu2cosu3
~r 12r 13r 23!

3 G . ~1!

The familiar two-body Lennard-Jones interaction is d
scribed by the energy and length scale parameterse ands;
the dimensionless parameterZ determines the strength of th
three-body Axilrod-Teller interaction, which depends on t
cluster’s three internal anglesu1, u2, andu3. The form of the
AT potential is such that forZ.0 it stabilizes near-linea
configurations of the cluster and destabilizes the equilat
triangle and nearby configurations@7#. The LJ parameters we
use in the current work are listed in Table I.

We characterize the dynamics of classical LJAT trim
by computing the Liapunov exponents along constant-ene
molecular dynamics trajectories generated by Eq.~1!. Li-
apunov exponents quantify the average long-time expon
tial rate of divergence of nearby trajectories in phase sp
For an isolated triatomic system, there are only two
apunov exponents that may be positive@8#; we denote these
exponents asl1 andl2. If at least one of these exponents
positive, the system is chaotic; if both exponents are z
the system is quasiperiodic. The sum of the positive ex
nents is the Kolmogorov entropy (K entropy!, which mea-
sures the rate at which information about the state of
system is lost@9#.

TABLE I. Lennard-Jones parameters used in this work. T
quantum parameterh5\/sAme is also given.

s ~Å! e ~cm21) m ~amu! h

Ne 2.749 25.0 20.18 0.0945
Ar 3.405 84.0 39.948 0.0294
Kr 3.827 115.4 83.80 0.0155
Xe 4.100 156.4 131.30 0.0099
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B. Quantum trimers

A dimensionless quantum mechanical Hamiltonian can
obtained from Eq. ~1! by defining the paramete
h5\/sAme:

Ĥ52
h2

2 (
i51

3

¹ i
21V~q12,q23,q13;Z!/e, ~2!

whereV is the LJAT potential presented above, and the
mensionless coordinatesqi j5r i j /s. The eigenstates of the
quantum Hamiltonian are fully parametrized byh andZ; the
h values for the trimers considered here are listed in Tabl
The classical limit is approached ash→0.

We obtain the vibrational energy levels for the trime
using the discrete variable representation~DVR! approach
outlined below in Sec. III, and examine various statistic
properties of the level distributions. The statistical measu
we concentrate on here areP(S), the distribution of spacings
between successive energy levels, andD3(L), the mean
spectral rigidity over a rangeL of energy levels. Referenc
@10# contains detailed definitions of theP(S) and D3(L)
statistics, along with an extensive review of the relevant s
tistical properties of spectra. Here we simply note th
P(S) andD3(L) are complementary statistical descriptio
of the level spectrum of a system;P(S) quantifies the short-
range correlations between successive energy levels, w
D3(L) measures, over a large energy rangeL, the least
squares deviation of the total sum of states from a stra
line fit.

The spectral statistics obtained from quantum Hamil
nians with chaotic classical analogs have been found to o
predictions based on random matrix theory~RMT! @10#. A
very good approximation to the RMT prediction forP(S) is
the Wigner distribution

PW ~S!5
pS

2
exp~2pS2/4!. ~3!

The RMT prediction for the spectral rigidity in the largeL
limit is

D3,RMT~L !5
lnL

p2 20.007. ~4!

Both of these predictions are for a range of energy levels
have been ‘‘unfolded’’ to obtain a spectrum with unit me
level density.

Quantum Hamiltonians whose classical analogs are i
grable are found to obey Poisson statistics@10#. In this case,
the distribution of spacings between successive energy le
is

PP~S!5e2S ~5!

and the spectral rigidity is

D3,P~L !5L/15. ~6!

Systems may display statistical properties that are in
mediate between the chaotic~RMT! and integrable~Poisson!
limits. This corresponds to the coexistence of regular a
irregular regions in the phase space of the classical Ha

e
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56 365EFFECTS OF THREE-BODY~AXILROD-TELLER! . . .
tonian. This behavior can be understood as a superpositio
properly weighted contributions from RMT-type an
Poisson-type quantum statistics, which arise, respectiv
from chaotic and integrable components of phase spac
the analogous classical Hamiltonian. For the simplest cas
two disjoint components of classical phase space, one
relative weightq, which is chaotic, and one with weigh
(12q), which is regular, Berry and Robnik@11# have de-
rived a formula forP(S) that interpolates between the RM
and Poisson limits presented above:

P~S;q!5~12q!2erfc~ApqS/2!exp@2~12q!S#

1@2q~12q!1pq3S/2#

3exp@2~12q!S2pq2S2/4#. ~7!

Pandey@12# has given an expression for the spectral rigid
D3, which also interpolates between the regular and cha
limits:

D3~L;q!5D3,RMT~qL!1D3,P„~12q!L…. ~8!

The DVR calculations outlined in Sec. III yield the eige
states of the quantum LJAT trimers and thereby give
some information about how the quantum trimers expl
different regions of the PES. We are also interested in
derstanding how the quantum clusters sample the PE
various temperatures; here, we expect to see strong di
ences between the classical and quantum trimers, at leas
sufficiently small atomic masses.

As an example, consider theT50 limit. At T50, the
spatial distribution function for the classical trimers will sim
ply be d(x2xmin), where x represents all of the cluster’
internal degrees of freedom, andxmin specifies the location o
the global minimum on the PES. TheT50 spatial distribu-
tion function for the quantum trimers will be given by th
probability density P(x)5uC0(x)u2 associated with the
ground state wave functionC0(x). For small values of the
atomic massm, ground state tunneling and zero-point ener
effects will lead to finite~nonzero! probabilities of observing
configurations of the quantum cluster associated with hig
energy minima, even atT50. In the absence of fermioni
antisymmetrization requirements,C0(x) is nodeless. Con-
figurations can be sampled from such a wave function us
diffusion quantum Monte Carlo techniques~outlined below!
so as to gauge the extent to which the wave function is
calized in a particular minimum.

At nonzero temperatures, the spatial distribution fun
tion for the quantum cluster will be given by the dia
onal density matrix element in the canonical ensemb
P(x)5^xue2bHux&, where b51/kT. In the eigenfunction
representation, we have

P~x!5(
n

uCn~x!u2e2bEn ~9!

where$Cn(x)% are the eigenstates of the Hamiltonian w
respective eigenvalues$En%. Finite temperature spatial dis
tributions can be generated by path integral Monte Ca
methods. In this study, we use diffusion and path integ
Monte Carlo techniques to compute the ground state w
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function and the finite temperature spatial distribution fun
tions for the quantum LJAT trimer Ne3. These quantum
Monte Carlo techniques are described briefly below.

III. COMPUTATIONAL METHODS

A. Liapunov exponents

The techniques we use to compute the Liapunov ex
nents of the classical LJAT trimers have been described
detail elsewhere@13,14#. Briefly, we integrate numerically
the equations of motion for finite length vectors that reside
the tangent space of the trimer; these equations of mo
depend parametrically on a constant-energy reference tra
tory that the trimer follows in phase space and that is gen
ated by the Hamiltonian given in Eq.~1!. We periodically
compute the Liapunov exponents by measuring the exten
which the tangent space vectors have grown or shrunk s
the trajectory’s beginning.

In the present study, we integrate the reference trajec
and the tangent space equations of motion for 105 time steps
of length 10214 s each. After every 1000 steps, we compu
the Liapunov exponents based on the lengths of the tan
space vectors; we then take the final set of exponents
tained at the end of the trajectory as our estimates of the
exponents.

Strictly speaking, Liapunov exponents are only defined
the limit t→`, and the exponents we calculate are prope
called ‘‘finite-time’’ Liapunov exponents. One way to asse
how closely our computed exponents approximate the
t→` exponents is to compare the results obtained from
ferent trajectories. This is because for ergodic systems,
t→` Liapunov exponents are independent of the initial co
ditions @8#. We therefore compute 100 trajectories at ea
energy and consider the distribution of exponents after5

steps. The initial conditions for the batches of 100 trajec
ries are drawn from a microcanonical ensemble@15,16# with
total angular momentumJ50.

If a batch of 100 trajectories gives a relatively narro
distribution of Liapunov exponents after 105 steps, it seems
likely that the finite-time exponents are close approximatio
to thet→` exponents. If, however, the trajectories gener
a wide distribution of final exponents, we know that eith
longer trajectories are required or the phase space sam
by the trajectories is not a single ergodic component.

B. Vibrational eigenstates

To compute the vibrational energy levels and eigensta
of the (J50) quantum LJAT trimers, we use the thre
dimensional DVR method with successive diagonalizat
and truncation, as developed by Whitnell, Light, and c
workers@17–19#.

The Hamiltonian in Eq.~2! can be written as a function o
three internal coordinates when only states with total ang
momentumJ50 are considered. We express this thre
dimensional Hamiltonian in terms of Pack’s adiabatic pr
cipal axis hyperspherical~APH! coordinates@20,21# in order
to exploit the symmetry of the trimers and thereby reduce
computational effort required to calculate the eigenfunctio

Pack’s APH coordinates (r,u,x) are defined in terms o
the mass-scaled Jacobi coordinates (r ,R,f) for a three-atom
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366 56CHAKRAVARTY, HINDE, LEITNER, AND WALES
system. These mass-scaled coordinates depend on a d
sionless constantc, which is a function of the masses of th
three atoms; when all three atoms have the same m
c5(3/4)1/4. In the mass-scaled Jacobi scheme,cr is the in-
teratomic vector between two of the three atoms,c21R is the
vector from the center of mass of these two atoms to
position of the third atom, andf is the angle betweenR and
r .

With this definition of the mass-scaled Jacobi coordina
and letting

S5A~R22r 2!21~2Rr cosf!2, ~10!

the APH coordinates are

r25r 21R2,

tanu/25S/~2Rrsinf!,
~11!

sin2x5~2Rrcosf!/S,

cos2x5~R22r 2!/S.

The limits of these APH coordinates are 0<r<`,
0<u<p, and 0<x,2p. Linear configurations of the tri-
mer correspond tou5p; the equilateral triangle configura
tion corresponds tou50 ~with all x values being equiva
lent!.

The finite basis representations used to generate the D
in Pack’s APH coordinates are the same as those use
Whitnell and Light@18,19# in their study of H3

1. The DVR
points for ther andx coordinates are equally spaced, wi
those inx covering the entire range 0<x,2p. The DVR
points for r span a specified and adjustable range in t
coordinate. The DVR parameters used in the current ca
lations are quite similar to those used in earlier studies of
trimers @22#, and we refer the reader to these studies
details.

The ground states of the trimers can also be compu
using diffusion quantum Monte Carlo~DQMC! techniques.
This approach is based on the fact that by introducing
imaginary time variablet5 i t /\, we can write the time-
dependent Schro¨dinger equation for the clusters as a diff
sion equation

]C

]t
5

\2

2m(
i51

3

¹ i
2C2VC, ~12!

where\2/2m is the diffusion constant andVC represents a
first-order forcing term. Ast→`, the solution to Eq.~12!
approaches asymptotically the trimer’s ground state w
function C0. A set of configurations$x% distributed with
probabilityC0(x) can be generated from this wave functio
using a simple unbiased DQMC procedure, which compu
the asymptotic solution to Eq.~12! by following the diffusive
motion of ‘‘replicas’’ in configuration space using rando
walk techniques@23–27#. In such a DQMC simulation, al
replicas have equal weight; reweighting must be done in
der to generate the distribution corresponding touC0u2. Such
reweighting procedures are relatively elaborate and com
tationally expensive, and are therefore not pursued here
en-

ss,

e
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In our DQMC scheme, the wave function is represen
by a distribution of 1000 replicas. The replicas are prop
gated iteratively using the short-time propagator~expressed
in atomic units!

P~xn11 ,xn!5exp$2Dt@V~xn11!2E#%Am/2pDt

3exp@2m~xn112xn!
2/2Dt#, ~13!

whereDt is the time step.
For the Ne3 cluster, we used a time step ofDt5100

atomic units, and propagated the replicas for 53104 to
13105 time steps to obtain ground state energies that w
converged to better than 1%~as compared with the DVR
calculations!. Once the energy had converged, we prop
gated the replicas for another 105 time steps; after every
104 steps, we performed a steepest descent quench on
replica to measure the fraction of replicas occupying the
angular basin,f tri , and the fraction occupying the linear ba
sin, f lin 512 f tri . The occupancies calculated from these
quenches were then averaged. Whilef tri and f lin will not be
exactly the same as the ground state occupancies of the
minima, because the replicas are distributed according
C0 and notuC0u2, there is evidence from the results of o
study that for Ne3 the two sets of quantities are not ve
different. In view of the fact that ifC0 is largely localized in
a given basin,uC0u2 will also be, this is not surprising.

C. Finite temperature quantum properties

The finite temperature properties of the quantum LJ
Ne3 cluster are computed using the Fourier path integ
Monte Carlo~PIMC! technique@28–32#. In this method, a
Metropolis Monte Carlo simulation is used to sample t
coordinate space variablesx and the Fourier coefficientsa,
which represent the various quantum paths of the syst
The Metropolis weight function for this Monte Carlo simu
lation is

W~x,a!5 expF2b^Veff&2(
n

an
2

2sn
2G ~14!

where b51/kT, sn
252b\2/mp2n2, and ^Veff& is the par-

tially averaged potential associated with the quantum path
PIMC simulation will generate a set of configurations$x%
distributed according to their probability of occurrenc
P(x), in the canonical ensemble@see Eq.~9!#. A steepest
descent quench can be performed for each sampled con
ration to test whether it lies in the triangular or linear bas
as in the DQMC simulations. For more details on the PIM
method and on the definition of^Veff&, the reader should se
the references listed above. In our calculations, 16 Fou
coefficients$an% are used per degree of freedom per partic
Each PIMC run consists of 2.53106 configurations, of which
500 were quenched as described above to determinePtri and
Plin .

For comparison with the quantum results, classical spa
probability distributions were obtained at finite temperatu
T.0 for the LJAT Ne3 cluster using standard Metropoli
Monte Carlo procedures. At each value ofZ, 53105 con-
figurations were generated, with an acceptance ratio
roughly 50%. Five hundred of these configurations we
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56 367EFFECTS OF THREE-BODY~AXILROD-TELLER! . . .
sampled~at intervals of 1000 MC steps! and were quenched
to determine the relative classical occupancies of the tr
gular and linear minima on the PES.

Estimated statistical errors for both the classical and qu
tum occupancies were obtained at selected values ofZ by
binning and quenching 5000 configurations~instead of 500!
and calculating the triangular and linear occupancies for
blocks of 500 configurations.

IV. RESULTS AND DISCUSSION: CLASSICAL TRIMERS

A. Potential surface topography

In the absence of the three-body AT term, the PES of
LJ trimer has a single global minimum corresponding to
equilateral triangleD3h geometry. By adding the three-bod
term to the potential, we introduce a new parameterZ that
we may vary continuously to modify the topography of t
PES. ForZ.0 the AT term stabilizes near-linear configur
tions of the cluster and destabilizes the equilateral trian
@7#. For Z>0.4 the AT potential is strong enough that th
linearD`h configuration, which is a saddle point forZ50,
becomes a local minimum. This new local minimum
higher in energy than theD3h global minimum, and is sepa
rated from it by a ‘‘bent’’ transition state corresponding to
obtuseC2v isosceles triangle. AsZ increases, the linea
minimum becomes deeper and theD3h minimum becomes
shallower, until atZ>1.8 the linear structure becomes th
new global minimum.

Figure 1 depicts the reaction path for rearrangement
tween the two minima at selectedZ values. Note that a
lower Z values, the isomerization coordinate~which corre-
sponds essentially to the bending normal mode of theC2v
transition state! exhibits much greater negative curvature
the cluster descends into the triangular minimum than it d
for descent into the linear minimum.

B. Liapunov exponents

Figure 2~a! shows the distribution of finalK-entropy val-
uesK5l11l2 obtained from a batch of 100 trajectories f
the Ar3 trimer with Z51 at E521.69e. Each trajectory
represented in this figure begins from initial conditions
which a steepest descent quench leads to theD3h minimum.
For comparison, Fig. 2~b! shows the distribution of finalK
entropies obtained from a batch of 100 trajectories for
same cluster at the same energy, but using trajectories
are initiated from coordinates for which quenching leads
the linear minimum. The regions of configuration space
which quenches lead to particular stationary points are
‘‘basins of attraction’’ of these structures. Such basins h
previously been visualized for triatomic systems in a diff
ent context@33,34# and feature in a new global optimizatio
algorithm described elsewhere@35#.

We see immediately that there are significant differen
between the two batches of trajectories. Those trajecto
beginning in the triangular basin give rise to a unimod
distribution of K-entropy values peaked aroundK'1.1
bits/ps. TheK-entropy distribution for the trajectories initi
ated in the linear basin, however, is distinctly trimodal, w
peaks atK'0, 0.2, and 1.1 bits/ps.
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The multimodal nature of theK-entropy distribution
shown in Fig. 2~b! suggests that the batch of trajectori
initiated from within the linear basin does not sample
single, ergodic component of phase space. Further evide
for this hypothesis comes from a closer examination of
trajectories themselves. We find that several of these tra
tories remain in the linear basin for the entire span of 15

time steps, despite the fact that atE521.81e, the cluster has
enough energy to escape from this region~as seen from Fig.
1!. These ‘‘trapped’’ trajectories are responsible for the tw
peaks shown in Fig. 2~b! at low values ofK.

In contrast, the trajectories that begin in the linear ba
but ultimately cross over the saddle separating the
minima haveK-entropy values that are similar to those f
the trajectories, which begin in the triangular basin, a
which are clustered aroundK'1.1 bits/ps. The trajectorie
that do cross the saddle, whether they begin in the linea
the triangular basin, make a few dozen~typically 40–60!
passes across the saddle during the 105-step trajectory.

FIG. 1. Reaction paths for the LJAT trimers with~a! Z51, ~b!
Z51.5, and~c! Z52. The energy along the reaction path is plott
in units of the LJ parametere; progress along the reaction pa
(x) is measured in units ofsAm, wherem ands are the LJ pa-
rameters given in Table I. The saddle point is atx50; positivex
values correspond to the triangular basin and negativex values
correspond to the linear basin. The energy of the saddle poin
22.076e, 22.043e, and 21.985e for Z51, 1.5, and 2, respec
tively.
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368 56CHAKRAVARTY, HINDE, LEITNER, AND WALES
We next look more closely at the lowK-entropy portion
of Fig. 2~b! to determine whether the apparent bimodality
this part distribution is real or an artifact. We do this b
computing final Liapunov exponents for a larger set of t
jectories~168 in all! atE521.69e, which begin in the linear
basin and remain there for 105 time steps. The distribution o
K values thereby obtained is shown in Fig. 3. From th
results, it appears that the peak located atK'0.2 bits/ps is
genuine.

The results presented in Figs. 2 and 3 suggest that
Z51 LJAT Ar3 cluster has three main regions of pha

FIG. 2. Distribution of finalK-entropy valuesK5l11l2 for
Z51 LJAT Ar3 at E521.69e. ~a! Distributions for 100 trajecto-
ries initiated in the triangular basin.~b! Distributions for 100 trajec-
tories initiated in the linear basin. TheK entropy is given in units of
bits/ps.

FIG. 3. Distribution of finalK-entropy values forZ51 LJAT
Ar 3 at E521.69e for a set of 168 trajectories that begin in th
linear basin and remain trapped there for 105 time steps. TheK
entropy is given in units of bits/ps.
f
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e

he

space atE521.69e. These are~1! a strongly chaotic
(K'1.1 bits/ps! region of phase space that spans both c
figurational basins and in which trajectories rapidly mo
between these basins;~2! a weakly chaotic (K'0.2 bits/ps!
region of phase space associated with trajectories that rem
trapped in the linear basin for at least 105 time steps~or 1
ns!; and ~3! an essentially quasiperiodic region of pha
space also associated with trajectories that remain trappe
the linear basin for 105 time steps or more. Broadly simila
results are obtained forZ51 Ar 3 at other energies, and fo
theZ52 Ar 3 cluster and theZ50.5 andZ51.5 Xe3 clusters
across a range of energies, as shown in Figs. 4 and 5.

To produce these figures, we have calculated theK en-
tropy K5l11l2 for a batch of trajectories and examine
probability distributions forK similar to those shown in Fig
2. The ‘‘end points’’ of the peaks in theseK distributions are
determined by locating the local minima in the derivative
the cumulative probability distribution forK. Then an aver-
ageK value and standard deviation for each peak is co
puted from those trajectories that make up that peak. Figu
4 and 5 show the averageK values obtained in this fashion

In each case we begin with a sample of 100 trajecto
initiated in either the triangular or linear basin. The trajec
ries that begin in the triangular basin always produce a u
modal distribution ofK values. At high energies, we fin
three peaks in theK-entropy distribution for trajectories tha
begin in the linear basin: one at large positiveK values, one

FIG. 4. K-entropy values representative of the various com
nents of phase space in LJAT Ar3 at ~a! Z51 and~b! Z52. The
left panel of each figure shows theK entropy for the strongly cha-
otic trajectories initiated in the triangular basin. The right panel
each figure shows theK-entropy values for the two or three region
of phase space sampled by trajectories initiated in the linear ba
Error bars extend one standard deviation in each direction. L
have been drawn to guide the eye and have no physical significa
TheK entropies are given in units of bits/ps and the energy in u
of e.



n-
fo
y
d
-
l
d
nt

w
gi
is

o

b
o
d
w

nd

the
in,
re-

of

the

ar
n

for
y a
AT
line
that
0%

r

e-
ys-
r-
ce,
e
ha-
ig-

ase

an,
-

po
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at small positiveK values, and one near zero. At lower e
ergies, however, we typically observe only two peaks
these trajectories: one at largeK values and one at nearl
zeroK values. The peaks with largeK values are associate
with trajectories that cross over theC2v saddle point separat
ing the basins on the PES, while the peaks with smalK
values are associated with trajectories that remain trappe
the linear basin. Each peak is represented by a single poi
Figs. 4 and 5.

For three of the trimers—Z51 and Z52 Ar 3, and
Z51.5 Xe3—at those energies where threeK-entropy peaks
are observed for trajectories initiated in the linear basin,
have examined a larger sample of 1000 trajectories be
ning in this basin. Using only those trajectories in th
sample that remain trapped in the linear basin for 105 time
steps~typically 10% to 40% of the sample!, we recompute
K values for the weakly chaotic and quasiperiodic regions
phase space.

For comparison with the quantum results presented
low, we have estimated the fraction of phase space ass
ated with the various regions of phase space represente
Figs. 4 and 5. These calculations are performed as follo

FIG. 5. K-entropy values representative of the various com
nents of phase space in LJAT Xe3 at ~a! Z50.5 and~b! Z51.5. See
the caption for Fig. 4 for further details.
r
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We first estimate the relative weight of the triangular a
linear basins~denotedWtri andWlin) at each energy from a
microcanonical sample@15,16# of 104 configurations. From
the binning procedure just described, we can estimate
fraction of trajectories that, when initiated in the linear bas
fall into the weakly chaotic and essentially quasiperiodic
gions of phase space. LetWwc,lin andWqp,lin denote these
fractions.~At energies where no weakly chaotic portion
phase space is observed, we setWwc,lin50.!

The relative sizes of the three regions of phase space—
strongly chaotic region that spans both basins~with weight
Wsc), the weakly chaotic region associated with the line
basin~with weightWwc), and the nearly quasiperiodic regio
associated with the linear basin~with weightWqp)—are then
computed as follows:

Wqp5WlinWqp,lin ,

Wwc5WlinWwc,lin , ~15!

Wsc512Wqp2Wwc .

The results are summarized in Table II. They show that
Z>1, the quasiperiodic and weakly chaotic regions occup
substantial fraction of the entire phase space of the LJ
trimers. Although these two regions of phase space dec
somewhat in importance as the energy increases, we see
even for energies well above the saddle point some 5–1
of the total phase space of theZ>1 trimers is quasiperiodic
or only weakly chaotic. In Sec. V we will show that simila
behavior is observed in the quantum clusters.

C. Phase space structure

The LJAT trimers have three vibrational degrees of fre
dom ~DOF!. The phase space structure of Hamiltonian s
tems with three or more DOF is still incompletely unde
stood. It is clear that in any system with mixed phase spa
the regular~or quasiperiodic! and chaotic regions of phas
space must be disjoint; what is not clear is whether the c
otic region of phase space can be further subdivided. W
gins @36# showed that geometrical structuresmayexist in the
phase space of three-DOF systems, which divide the ph
space into disjoint regions separated by partial~or ‘‘porous’’!
barriers. In a study of the three-DOF He–I2 van der Waals
complex which used a physically reasonable Hamiltoni
however, Gillilan and Ezra@37# could not locate these struc
tures.

-

LJAT
TABLE II. Relative weight of the quasiperiodic and weakly chaotic components of phase space in
trimers. The error arising from the finite size of our trajectory batches is estimated to be60.03.

Z50.5 Xe3 Z51 Ar3 Z51.5 Xe3 Z52 Ar3
E (e) Wqp Wwc E (e) Wqp Wwc E (e) Wqp Wwc E (e) Wqp Wwc

22.028 0.01 0.0 22.047 0.05 0.0 22.028 0.33 0.0 21.958 0.77 0.0
21.900 0.01 0.0 21.929 0.11 0.0 21.900 0.33 0.0 21.839 0.54 0.0
21.772 0.01 0.01 21.810 0.04 0.06 21.772 0.08 0.16 21.720 0.05 0.29
21.645 0.01 0.01 21.690 0.02 0.05 21.645 0.03 0.16 21.601 0.04 0.18
21.517 0.01 0.01 21.571 0.01 0.04 21.517 0.01 0.08 21.482 0.02 0.08
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370 56CHAKRAVARTY, HINDE, LEITNER, AND WALES
The results in Figs. 4 and 5 and in Table II indicate th
the regions of phase space we have termed ‘‘weakly c
otic’’ and ‘‘strongly chaotic’’ are separated by some kind
barrier. Indirect evidence suggests that the barrier is por
Note that the high-K peaks shown in Fig. 2 are relativel
broad and are skewed toward lowerK values. The trajecto-
ries that are responsible for this skewing are those that
plore both the triangular and linear basins on the PES,
which at some point enter the linear basin and remain th
for a substantial period of time. This indicates that transp
between the weakly and strongly chaotic regions of ph
space is possible. Nevertheless, the barrier between thes
gions is fairly effective at separating weakly chaotic behav
from strongly chaotic behavior, because a large numbe
weakly chaotic trajectories remain trapped in the linear ba
for as long as 1 ns.

Inspection of the trapped trajectories shows that they
undergoing predominantly bending motion localized arou
the linear minimum energy geometry. The behavior of th
trajectories is thus qualitatively similar to that of the stab
‘‘horseshoe’’ periodic orbit, which has been observed in s
eral studies of H3

1 @38–40#. We hypothesize that an analo
gous stable periodic orbit exists in the LJAT trimers f
Z>1, and that it is surrounded by a quasiperiodic ‘‘sheat
in phase space. The region of phase space we have iden
as weakly chaotic is likely to be located just outside t
sheath, and is separated from the remaining strongly cha
portion of phase space by a partial barrier or phase sp
bottleneck. Trajectories that are initiated inside this wea
chaotic region of phase space, or which enter it from
strongly chaotic region, remain trapped for long periods
time because the interface between the weakly chaotic
quasiperiodic regions of phase space is ‘‘sticky’’@41#.

Yurtsever and Elmacı@42# have recently studied the cha
otic dynamics of LJAT trimers with LJ parameters a
atomic masses chosen to represent C3 clusters. After an ap-
propriate rescaling of the time variablet @43#, their results
can be compared where they overlap with ours, atZ50.5
and Z51. The relevant findings of Yurtsever and Elma
~YE! are as follows:~1! in the range 0<Z<1, high-energy
(E>21.95e) trajectories are strongly chaotic, whether th
are initiated in the linear basin or in the triangular basin; a
~2! in the intermediateZ range 0.25<Z<0.75, low-energy
(E,21.95e) trajectories are weakly to moderately chaot
Furthermore, in this range ofZ andE, the degree of chao
exhibited by trajectories initiated in the linear basin increa
asZ increases, while the degree of chaos exhibited by
jectories initiated in the triangular basin decreases asZ in-
creases.

YE find that the long-time, low-energy behavior of the
clusters depends strongly on the initial geometry; this le
support to the picture of the phase space structure tha
have outlined above. At high energies, though, YE obse
only strongly chaotic dynamics, in apparent disagreem
with our qualitative picture. This discrepancy can be partia
reconciled by considering the characteristic time scales
motion in YE’s C3 clusters and our rare-gas trimers. T
classical trajectories computed by YE and by us are sim
in duration~roughly 1 ns!; however, the vibrational frequen
cies of C3 clusters are much higher than those of rare-
trimers. Therefore the C3 trajectories are much longer in
t
a-

s.
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relative sense, and it is plausible that YE’s trajectories ha
escaped the ‘‘sticky,’’ weakly chaotic region of phase spa
and more closely represent thet→` Liapunov exponents of
the LJAT system.

Finally, we note that our results, and those obtained
YE, can be rationalized in terms of a model based on
degree of negative curvature of the PES@44,45#. As Fig. 1
shows, the basin associated with near-linear configurat
of the LJAT trimers exhibits relatively weak negative curv
ture near the saddle point, while the triangular basin
strongly negatively curved near the saddle. We have pr
ously observed@44,45# a strong correlation between the d
gree of negative curvature on the PES and the magnitud
a system’s local Liapunov exponents. This simple nega
curvature model predicts that the triangular basin will gi
rise to more strongly chaotic behavior than will the line
basin, in agreement with our results. AsZ increases, the
degree of negative curvature in the linear basin increa
while that in the triangular basin decreases; this is in acc
with YE’s findings in the intermediateZ range.

V. RESULTS AND DISCUSSION: QUANTUM TRIMERS

The classical dynamical results presented in the previ
section rest on the validity of the notion that the atoms
LJAT trimers follow well-defined trajectories in phase spac
Such a viewpoint is ultimately incompatible with quantu
mechanics, where the concept of a trajectory is abs
Hence it is important for us to consider the extent to wh
the classical picture presented above must be modified w
quantum clusters are considered.

A. Quantum Monte Carlo calculations

We begin by assessing the role of zero-point effects in
vibrational ground state of the LJAT Ne3 trimer, which has
the largesth value of all the clusters studied here and whi
therefore is expected to show the most pronounced quan
phenomena. Using the DQMC techniques outlined above,
have computed as a function ofZ the fraction of replicas
representing the ground state that are located in the triang
and linear minima,f tri and f lin , for the vibrational ground
state of the Ne3 cluster. Figure 6~a! shows howf tri varies
with Z for the Ne3 cluster. The classical occupancies are a
presented in this figure for easy comparison.

The point at whichf tri50.5 indicates a switchover from
predominantly triangular geometry~wheref tri.0.5) to a pre-
dominantly linear geometry~wheref tri,0.5). In the classical
Ne3 cluster, this switchover occurs atZ'1.8, and can be
understood in terms of the deepening of the linear minim
on the PES with increasingZ, as shown in Fig. 1. In the
quantum cluster, the switchover occurs atZ'2.4; the shift of
the switchover point to higherZ values reflects the balanc
between the depths and the zero-point energies of the
minima.

Similar quantum delocalization effects are observed a
nite temperatures. Figure 6~b! shows howPtri varies withZ
for the classical and quantum Ne3 clusters atT52 K. ~Very
similar results are obtained atT51 and 1.5 K; forT>3 K,
though, the quantum cluster begins to evaporate, so the h
est temperature used in the PIMC studies wasT52 K.! This
figure indicates that the classical switchover occurs
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56 371EFFECTS OF THREE-BODY~AXILROD-TELLER! . . .
Z'1.8, and the quantum switchover atZ'2.3. The differ-
ence between the quantum and classical switchover va
indicates the importance of quantum effects at these temp
tures. Moreover, the switchover values computed fromf tri at
T50 and fromPtri at T52 K are very similar, indicating
that ground state occupancies of the two minima must
close tof tri and f lin .

B. DVR calculations

The diffusion and path integral Monte Carlo results in
cate that we must take quantum effects into account to p
erly describe the behavior of the Ne3 LJAT trimer. Although
we expect that the clusters with smallh values will behave
somewhat more classically, we have computed and ex
ined vibrational eigenstates for all four of the trimers stud
here, for comparison with both the classical trajectory res
presented in Sec. IV and the quantum results obtained ea
@22,46,47# for trimers bound by LJ potentials alone. The
calculations were performed using the DVR technique
scribed above withZ values of 0.5, 1, and 1.5. At thes
values ofZ, both the equilateral triangle and the linear co
figuration are minima on the PES; however, the former
mains the global minimum throughout this range ofZ values.
This permits us to exploit theD3h symmetry of the equilat-
eral triangle in the DVR calculations. We note that for the
trimers, which are all composed of bosons, only theA18 levels
are symmetry allowed in theJ50 vibrational manifold.

FIG. 6. ~a! TheZ dependence off tri for LJAT Ne3, showing the
degree of localization in the triangular minimum of the ground st
wave function.~b! The Z dependence ofPtri , the relative occu-
pancy of the triangular minimum, for LJAT Ne3 at T52 K. Esti-
mated error bars are less than60.04 for all values ofZ. Points
indicate the classical values off tri andPtri for comparison.
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Table III gives the energies of the vibrational groun
states of the four trimers at theseZ values. For comparison
the ground state energies computed by DQMC are a
given, as are the energies of the global~triangular! minimum
on the PES. We see that the quantum ground state ene
are all higher than the classical minima; this difference
greatest for the Ne3 cluster~which has the largesth value!
and smallest for the Xe3 cluster, which comes as no surpris
As Z increases, the quantum ground state energies for
heavier clusters approach the energies of the class
minima more closely. This can be understood qualitativ
from the reaction paths presented in Fig. 1; the cluster’s c
sical vibrational frequencies near the triangular minimum
crease asZ increases, and we expect that the magnitude
the zero-point energy will likewise decrease. We note, ho
ever, that the effect of increasingZ is rather modest for
Ne3. This suggests that asZ increases, the increasing occ
pancy of the higher-energy linear minimum in this cluster~as
shown in Fig. 6! partially offsets the decrease of the vibr
tional frequencies at the triangular minimum because it te
to increase the potential energy.

This simple rationalization of the decrease in the ze
point energy with increasingZ raises the question of how
closely the energy of the quantum ground states can be
mated using a normal mode approach. For the LJ A3,
Kr 3, and Xe3 trimers, the energies of the vibrational groun
states were found to be very close to those obtained, usi
simple separable normal mode approximation, from the c
sical vibrational frequencies at the triangular minimum
the PES@22#. Table IV gives normal mode estimates for th
ground state energies of the four LJAT trimers at variousZ
values. Note that the normal mode estimates are alw
higher than the actual ground state energies, and the ag

e

TABLE III. Ground state energies~in units ofe) of the quantum
LJAT trimers for severalZ values. Both DVR and DQMC results
are given for Ne3; only DVR results are given for the heavier clu
ters. The ground state configuration of each trimer is roughly
equilateral triangle; the classical energy of theD3h global minimum
on the potential surface is given for comparison.

Cluster Z50 Z50.5 Z51 Z51.5

Ne3 ~DVR! 21.718 21.591 21.479 21.379
Ne3 ~DQMC! 21.719 21.585 21.473 21.374
Ar 3 22.553 22.358 22.181 22.020
Kr 3 22.761 22.548 22.355 22.179
Xe3 22.844 22.626 22.426 22.235
Classical 23.000 22.757 22.514 22.271

TABLE IV. Normal mode estimates~in units of e) for the
ground state energies of the quantum LJAT trimers for severaZ
values.

Z Ne3 Ar 3 Kr 3 Xe3

0.0 21.506 22.532 22.754 22.844
0.5 21.231 22.281 22.507 22.597
1.0 20.970 22.030 22.260 22.351
1.5 20.704 21.780 22.013 22.106
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FIG. 7. Selected low-lying vibrational wave functions for theZ50.5 Ar3 trimer, shown as contour diagrams on the (u,r) plane, which
slices through the wave function atx50. Panel~a! depicts the ground state (n50), and panels~b! through~f! show excited statesn51, 2,
5, 6, and 7 respectively.
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ment between the two values becomes increasingly poo
Z increases.

One possible explanation for this behavior is that the n
mal mode approach~even when corrected for anharmon
vibrational effects@22#! underestimates the anharmonicity
the triangular minimum at higherZ values; based on an ana
ogy with the diatomic Morse potential, this anharmonicity
expected to lower the energy of the vibrational ground st
Figure 1 shows that asZ increases and the energy of th
triangular minimum increases, the basin surrounding
minimum becomes wider and increasingly anharmonic.

Previous studies of the LJ clusters showed that for p
ticular vibrational states~or groups of states in narrow band
of energies!, the probability density of the cluster’s vibra
tional wave function was concentrated near the linear c
figuration @22#. The energy of the lowest state~or group of
states! among these was therefore identified as the quan
mechanical equivalent of the classical transition state ene
For the LJAT trimers we also find vibrational states that
dominated by linear configurations; since the linear geom
is a local minimum on the PES forZ>0.4, we anticipate tha
the tendency for the wave functions to peak near the lin
configuration will be accentuated forZ values in this range

Figures 7 and 8 show that this is indeed the case. Here
plot ~in the APH coordinate system! several low-lying vibra-
tional states for LJAT Ar3 at Z50.5 andZ51.5; the plots
are cuts through the three-dimensional wave functions
x50. On these plots,u50 corresponds to the equilater
as

r-
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e
ry
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triangle, whileu5p corresponds to the linear geometry. Fi
ure 7~e! depicts the lowest-energy ‘‘linear’’ wave function o
the Z50.5 Ar3 cluster, and Fig. 8~b! shows the lowest-
energy ‘‘linear’’ state for theZ51.5 Ar3 cluster. It is clear
that the wave function is more localized around the line
configuration at the higher value ofZ, as expected. Note als
that less vibrational excitation is required to reach t
lowest-energy linear wave function at the higherZ value; for
Z50.5, the lowest linear state is the sixth excited state, wh
for Z51.5 it is the first.

A similar graphical analysis of the vibrational states of
four trimers allows us to determine the energies of the low
states, which may be described as linear. The energie
these states are listed in Table V. We see that in the Kr3 and
Xe3 trimers much less vibrational excitation is required
reach the lowest-energy linear state at highZ values; the
Ne3 cluster, however, is not as sensitive to changes inZ,
presumably because its low-lying wave functions are hig
delocalized at allZ values. Graphical analysis of the Ne3

eigenstates confirms this, and indicates that asZ increases,
the ground state of the Ne3 trimer becomes more delocalize
across both the triangular and linear minima. This is in
cord with the DQMC results shown in Fig. 6.

For the LJ clusters~whereZ50), it was found that the
ratio between the energies of the vibrational ground state
the lowest ‘‘linear’’ wave function was always close to th
value 0.677, which is the ratio between the classical poten
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FIG. 8. The six lowest vibrational wave functions for theZ51.5 Ar3 trimer, shown as contour diagrams on the (u,r) plane, which slices
through the wave function atx50. Panel~a! depicts the ground state (n50), and panels~b! through~f! show excited statesn51 through
n55.
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energies of the triangular and linear stationary points on
LJ PES. We have computed the ratios between the vi
tional ground state and the lowest linear state for the f
trimers and the threeZ values we have examined; these r
tios ~along with the ratio of the classical energies! are listed
in Table VI. We see that the energy ratios for the quant
LJAT clusters are typically quite close to their classica
predicted values. The agreement is poorest for Ne3, the clus-
ter that shows the largest quantum effects; for the hea

TABLE V. Energies~in units of e) of the lowest-energy ‘‘lin-
ear’’ wave functions of the quantum LJAT trimers for severalZ
values. The classical energy of the linear stationary point on
potential surface is given for comparison. The numbers in paren
ses indicate the index of the vibrational state for each linear w
function, withn50 being the ground state.

Z Ne3 Ar 3 Kr 3 Xe3 Classical

0.0 21.139 21.731 21.867 21.923 22.031
(n52) (n510) (n532) (n579)

0.5 21.187 21.765 21.910 21.964 22.075
(n51) (n56) (n518) (n544)

1.0 21.185 21.794 21.946 22.007 22.119
(n51) (n53) (n58) (n519)

1.5 21.194 21.829 21.986 22.044 22.164
(n51) (n51) (n53) (n55)
e
a-
r
-

er

clusters, the agreement between the quantum and clas
ratios is best at smallZ and worst atZ51.5.

The linear geometry is a local minimum at theZ values
we have studied; we can therefore once again use a no
mode approach to estimate the energies of the lowest lin
wave function, and these estimates are listed in Table
The normal mode estimates are quite good at all of theZ
values studied for the Ar3, Kr 3, and Xe3 clusters, but rather
poor for the Ne3 cluster. The relatively poor agreement b
tween the normal mode model and the exact energies
Ne3 is not too surprising given that this cluster deviat
strongly from the classical picture at allZ values. For all four
clusters, however, the normal mode estimates and e
quantum energies are in much better agreement for the li
configuration than for the triangular configuration.

TABLE VI. Ratios between the ground state energy and
energy of the lowest ‘‘linear’’ wave function of the quantum LJA
trimers at severalZ values. The classical energy ratios are given
comparison.

Z Ne3 Ar 3 Kr 3 Xe3 Classical

0.0 0.663 0.678 0.676 0.676 0.677
0.5 0.746 0.749 0.750 0.748 0.753
1.0 0.801 0.823 0.826 0.827 0.843
1.5 0.866 0.905 0.911 0.915 0.953
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e-
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We see from Figs. 7 and 8 that the low-lying vibration
states of bothZ50.5 and Z51.5 Ar3 are concentrated
around the horseshoe orbit described previously. Similar
sults are obtained for the heavier trimers. The low-lyi
states in the Ar3, Kr 3, and Xe3 clusters all exhibit very
regular and structured nodal patterns, as seen in these fig
These nodal patterns allow us to characterize the vibratio
motion in these states, even if we cannot go so far as
assign quantum numbers to the eigenstates. For example
second and third excited states shown in Fig. 8 forZ51.5
Ar 3 are bending modes near the triangular and linear c
figurations, respectively. At higher energies~not shown
here!, we observe well-defined stretches localized near
linear configuration.

At even higher energies, though, the nodal patterns of
heavier trimers’ eigenstates become increasingly irregu
Figure 9 depicts three vibrational states ofZ51.5 Xe3 near
the energyE521.745e. It is interesting to note that all thre
states remain concentrated along the horseshoe orbit de
their irregular nodal patterns. The finer details of the th
wave functions, however, are different; the state in Fig. 9~a!
is localized predominantly around the linear configuratio
while that in Fig. 9~c! is mostly triangular. The intermediat
state shown in Fig. 9~b! is spread along the horseshoe orb
but appears to be mostly localized around theC2v transition
state.

We now turn to the question of whether the mixture
chaotic and regular classical dynamical behavior~Sec. IV!
persists in the quantum clusters. To answer this question
perform a statistical analysis of the vibrational energy sp
trum of the Xe3 cluster atZ51.5. We choose to analyze th
Xe3 cluster because it has the highest level density of al
the trimers studied here, and is therefore most appropriate
an investigation of the spectral statistics. The largeZ value
was chosen to emphasize the effect of the three-body
term on the vibrational spectrum. Recall that previous w
has shown that the energy level statistics of the quantum
Ar 3, Kr 3, and Xe3 clusters are close to those predicted
random matrix theory@22#; this finding is in accord with
studies that suggest that the classical Ar3 LJ cluster~which
hasZ50) is largely chaotic at all but the lowest energi
@14#. ~However, we note that an analysis of large numbers
independent classical trajectories, like that presented in
IV, was not done for the LJ Ar3 cluster.!

We have obtained 273 converged energy levels for
Z51.5 Xe3 cluster in the range21.88e<E<21.42e; the
distribution of energy level spacings and the spectral rigid
were computed for this stretch of energy levels, and the
sults are plotted in Fig. 10. We note that this range of en

TABLE VII. Normal mode estimates~in units of e) for the
‘‘linear’’ state energies of the quantum LJAT trimers for seve
Z values.

Z Ne3 Ar 3 Kr 3 Xe3

0.0 21.403 21.718 21.897 21.926
0.5 20.990 21.731 21.895 21.960
1.0 20.992 21.762 21.932 21.999
1.5 21.005 21.796 21.971 22.040
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FIG. 9. Three highly excited vibrational wave functions for th
Z51.5 Xe3 trimer, shown as contour diagrams on the (u,r) plane,
which slices through the wave function atx50. Panel~a! shows the
excited staten584 at E521.750e; panel ~b! shows the state
n586 at E521.745e; and panel~c! shows the staten587 at
E521.742e.
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gies is well above the classical transition state ene
E522.043e for Z51.5.

Figure 10~a! shows the actual distribution of level spa
ingsP(S) and compares it to the Wigner and Poisson dis
butions. It is clear that the actual distribution is much clo
to the Wigner distribution~obtained from random matrix
theory!, although the agreement is not perfect. To quan
the deviation of the actualP(S) distribution from the Wigner
limit, we have fitted the actual distribution to the Berr
Robnik interpolation formula, Eq.~7!. The best agreement i
obtained when the fraction of classical phase space occu
by chaotic trajectories isq50.88. Figure 10~b! shows the
spectral rigidityD3(L) for the Z51.5 Xe3 cluster. Once
again we find that the cluster lies between the RMT a
Poisson limits, but closer to the RMT limit. The Pand
interpolation formula, Eq.~8!, gives a good fit to the ob
served spectral rigidity whenq is set to 0.88.

These results suggest that in the energy ra
21.88e<E<21.42e, the classical phase space of the X3
trimer at Z51.5 is predominantly chaotic, but also has
small regular component~about 12% of the total phase spa
volume!. This picture is qualitatively similar to that deduce
from the analysis of classical molecular dynamics trajec

FIG. 10. ~a! Distribution of nearest-neighbor energy level spa
ings for the 273 states in the energy range21.88e<E<21.42e for
the Z51.5 Xe3 trimer. The histogram represents the actual dis
bution of level spacings; the dotted and dashed curves are
Wigner and Poisson distributions respectively, and the solid cu
is the Berry-Robnik prediction forq50.88.~b! The spectral rigidity
D3(L) for the same set of levels as in~a!. The middle solid curve is
the result computed from the actual levels; the lower and up
solid curves are the random matrix and Poisson predictions, res
tively. The dashed line is the Pandey interpolation withq50.88.
y

-
r

y

ed
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ries in Sec. IV, and suggests that the quantum LJAT trim
incorporate the essential features of the mixed phase s
picture developed there.

VI. CONCLUDING REMARKS: IMPLICATIONS
OF MIXED PHASE SPACE

We find that the classical phase space of the LJAT trim
can be divided into three regions that are qualitatively diff
ent: one region is strongly chaotic, one is weakly chao
and one is quasiperiodic. This observation is characteristi
the phase space structure of a variety of few-degree
freedom conservative systems, in which the weakly cha
region of phase space is associated with trajectories tha
hibit intermittent dynamics. These intermittent trajectori
spend long periods of time in the weakly chaotic region
phase space, punctuated by ‘‘bursts’’ of highly chaotic b
havior as the trajectories flow into the strongly chaotic reg
of phase space.

This type of intermittent dynamical behavior has been
focus of a number of previous studies, both of low
dimensional Hamiltonian maps@41,48,49# and of the classi-
cal dynamics of the hydrogen atom in magnetic fields@50#.
Sepúlveda et al. @51# identified a correspondence betwe
the distribution of local Liapunov exponents and the pow
spectrum of classical trajectories that exhibit intermitten
quasiregular portions of a trajectory give rise to very sm
exponents that correlate closely with the sharp, narrow pe
of the power spectrum, while strongly chaotic portions o
trajectory yield larger local Liapunov exponents and cor
late with the spectrum’s broader features. The broad and
row peaks that coexist in the power spectrum of intermitt
trajectories in a model system were observed@51# to closely
resemble those features found in power spectra of small
lecular systems such as H3

1 and Na3. Presumably these
molecular systems, like the LJAT trimers we have studi
exhibit dynamical intermittency.

How might this intermittency be reflected in the ener
level spacing statistics of quantum mechanical LJAT tri
ers? In the semiclassical limit (\→0), weakly chaotic phase
space regions contribute ‘‘irregular’’ levels to the ener
level spectrum, because classical trajectories passing thro
these regions are ultimately unstable. However, in the qu
tum mechanical clusters, the energy level spacing may be
large for such a weak instability to be reflected in the eig
states.

Indeed, for the heaviest trimer in our study, Xe3, the level
spacing is on the order of 1 cm21, which is too large for the
eigenstates to reflect the irregularity of a trajectory th
spends about 1 ns undergoing essentially regular mo
@52#. Thus for all of the quantum LJAT trimers studied her
the phase space region that we have characterized as w
chaotic actually contributesregular dynamical character
to the energy level spectrum. For example, the value
q50.88 obtained for the Berry-Robnik level spacing para
eter for Z51.5 Xe3 in the energy range21.88e<E<
21.42e can be interpreted to mean that at these energ
some 12% of the phase space is filled byeither regular or
weakly chaotic trajectories.

This conclusion is consistent with the classical results p
sented in Table II. This table shows that for energies ab
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E521.65e, the quasiperiodic portion of the classical pha
space ofZ51.5 Xe3 makes up less than 5% of the consta
energy surface; another 10–15% of the phase space is o
pied by the weakly chaotic region. Most of the quantu
energy levels we have analyzed forZ51.5 Xe3 lie above
E521.65e, and deviations from random matrix prediction
for this system would therefore arise largely from states c
responding to weakly chaotic regions of phase space.

More subtle properties of the classical rare-gas trim
cannot be observed in their quantum counterparts with
taking the trimers much farther towards the semiclass
limit. By tuning \ to smaller values, we would be able
detect the influence of intermittent dynamical behavior in
quantum trimers. One effect would be to increaseq to a
value corresponding to the fraction of phase space tha
either strongly or weakly chaotic. By varying\ across a
wide range of values, we could also study the influence
classical periodic orbits on the eigenstates of the quan
trimers, such as Taylor and co-workers@53# have recently
done for HO2.

Our study has revealed a number of similarities betw
the classical LJAT trimers and their quantum counterpa
The structures of minima and saddle points on the PES
-
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re

revealed in the wave functions and the finite temperat
properties of the quantum clusters. Both classical traject
studies and an analysis of the energy level spacings of
quantum clusters show that the addition of the three-b
AT term to the LJ pair potential creates a system who
phase space is mixed, with strongly chaotic, weakly chao
and quasiperiodic regions, over a large range of energ
Because the importance of the AT term can be contro
using the adjustable parameterZ, these LJAT clusters may
be good model systems for further study of mixed pha
space in classical and quantum mechanics.
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@17# Z. Bacić, R. M. Whitnell, D. Brown, and J. C. Light, Compu

Phys. Commun.51, 35 ~1988!.
@18# R. M. Whitnell and J. C. Light, J. Chem. Phys.89, 3674

~1988!.
@19# R. M. Whitnell and J. C. Light, J. Chem. Phys.90, 1774

~1989!.
@20# R. T Pack, Chem. Phys. Lett.108, 333 ~1984!.
@21# R. T Pack and G. A. Parker, J. Chem. Phys.87, 3888~1984!.
@22# D. M. Leitner, J. D. Doll, and R. M. Whitnell, J. Chem. Phy

94, 6644~1991!.
.

.

s.

@23# J. B. Anderson, J. Chem. Phys.63, 1499~1975!.
@24# J. W. Negele and H. Orland,Quantum Many-Particle System

~Addison-Wesley, New York, 1988!.
@25# M. A. Suhm and R. O. Watts, Phys. Rep.204, 293 ~1991!.
@26# K. E. Schmidt and D. M. Ceperley, inThe Monte Carlo

Method in Condensed Matter Physics, edited by K. Binder
~Springer, Berlin, 1992!.

@27# B. L. Hammond, W. A. Lester, Jr., and P. J. Reynolds,Monte
Carlo Methods in Ab Initio Quantum Chemistry~World Scien-
tific, Singapore, 1994!.

@28# J. D. Doll, D. L. Freeman, and T. L. Beck, Adv. Chem. Phy
78, 61 ~1990!.

@29# T. L. Beck, J. D. Doll, and D. L. Freeman, J. Chem. Phys.90,
5651 ~1990!.

@30# D. D. Frantz, D. L. Freeman, and J. D. Doll, J. Chem. Ph
97, 5713~1992!.

@31# C. Chakravarty, J. Chem. Phys.99, 8038~1993!.
@32# C. Chakravarty, J. Chem. Phys.102, 956 ~1995!.
@33# D. J. Wales, J. Chem. Soc. Faraday Trans.88, 653 ~1992!.
@34# D. J. Wales, J. Chem. Soc. Faraday Trans.89, 1305~1993!.
@35# D. J. Wales and J. P. K. Doye~unpublished!.
@36# S. Wiggins, Physica D44, 471 ~1990!.
@37# R. E. Gillilan and G. S. Ezra, J. Chem. Phys.94, 2648~1991!.
@38# M. Berblinger, E. Pollak, and Ch. Schlier, J. Chem. Phys.88,

5643 ~1988!.
@39# J. M. Gomez Llorente and E. Pollak, J. Chem. Phys.90, 5406

~1989!.
@40# O. Brass, J. Tennyson, and E. Pollak, J. Chem. Phys.92, 3377

~1990!.
@41# Y. Kikuchi and Y. Aizawa, Prog. Theor. Phys.84, 563~1990!.
@42# E. Yurtsever and N. Elmacı, Phys. Rev. A55, 538 ~1997!.
@43# P. A. Braier, R. S. Berry, and D. J. Wales, J. Chem. Phys.93,

8745 ~1990!.



s.

s.

tic
an-
ther
ys.

56 377EFFECTS OF THREE-BODY~AXILROD-TELLER! . . .
@44# R. J. Hinde, R. S. Berry, and D. J. Wales, J. Chem. Phys.96,
1376 ~1992!.

@45# R. J. Hinde and R. S. Berry, J. Chem. Phys.99, 2942
~1993!.

@46# D. M. Leitner, R. S. Berry, and R. M. Whitnell, J. Chem. Phy
91, 3470~1989!.

@47# D. M. Leitner, J. D. Doll, and R. M. Whitnell, J. Chem. Phy
96, 9239~1992!.

@48# A. B. Zisook, Phys. Rev. A25, 2289~1982!.
@49# G. Stolovitzky and J. A. Hernando, Phys. Rev. A43, 2774

~1991!.
@50# P. Schmelcher and L. S. Cederbaum, Phys. Rev. A47, 2634
~1993!.
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